The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A210572 Triangle read by rows: T(n,k) = number of vertices of eccentricity k in the Lucas cube graph of order n. 2

%I #25 Feb 26 2017 04:34:25

%S 1,1,0,0,1,2,0,1,3,0,0,0,1,4,2,0,0,1,5,5,0,0,0,0,1,9,6,2,0,0,0,1,7,14,

%T 7,0,0,0,0,0,1,16,20,8,2,0,0,0,0,1,9,30,27,9,0,0,0,0,0,0,1,25,50,35,

%U 10,2,0,0,0,0,0,1,11,55,77,44,11,0

%N Triangle read by rows: T(n,k) = number of vertices of eccentricity k in the Lucas cube graph of order n.

%C The Castro and Mollard reference contains a formula for T(n,k) (Corollary 5.17); it is used in the Maple program given below. - _Emeric Deutsch_, Aug 06 2014

%H Alois P. Heinz, <a href="/A210572/b210572.txt">Rows n = 0..140, flattened</a>

%H A. Castro and M. Mollard, <a href="http://dx.doi.org/10.1016/j.disc.2011.11.006">The eccentricity sequences of Fibonacci and Lucas cubes</a>, Discrete Math., 312 (2012), 1025-1037.

%F G.f.: (1 + t*z^2)/(1 - t*z - t*z^2) + 1/(1 + t*z) - (1 - z)/(1 - t*z^2). - _Emeric Deutsch_, Aug 06 2014

%e Row 3 is 0,1,3,0 because the Lucas cube L_3 is the star tree on 4 vertices, having eccentricities 1, 2, 2, 2.

%e Triangle begins:

%e 1,

%e 1, 0,

%e 0, 1, 2,

%e 0, 1, 3, 0,

%e 0, 0, 1, 4, 2,

%e 0, 0, 1, 5, 5, 0,

%e 0, 0, 0, 1, 9, 6, 2,

%e 0, 0, 0, 1, 7, 14, 7, 0,

%e 0, 0, 0, 0, 1, 16, 20, 8, 2,

%e 0, 0, 0, 0, 1, 9, 30, 27, 9, 0,

%e ...

%p T := proc (n, k) if n = 0 and k = 0 then 1 elif n = 1 and k = 0 then 1 elif k = 0 then 0 elif `mod`(n, 2) = 0 and k = n then 2 elif `mod`(n, 2) = 1 and k = n then 0 elif n = 2*k then binomial(k, n-k)+binomial(k-1, n-k-1)-1 elif n = 2*k+1 then binomial(k, n-k)+binomial(k-1, n-k-1)+1 else binomial(k, n-k)+binomial(k-1, n-k-1) end if end proc: for m from 0 to 16 do seq(T(m, k), k = 0 .. m) end do;

%p # yields sequence in triangular form - _Emeric Deutsch_, Aug 06 2014

%t T[n_, k_] := Which[n == 0 && k == 0, 1, n == 1 && k == 0, 1, k == 0, 0, EvenQ[n] && k == n, 2, OddQ[n] && k == n, 0, n == 2*k, Binomial[k, n-k] + Binomial[k-1, n-k-1]-1, n == 2*k+1, Binomial[k, n-k] + Binomial[k-1, n-k- 1]+1, True, Binomial[k, n-k] + Binomial[k-1, n-k-1]]; Table[T[m, k], {m, 0, 16}, {k, 0, m}] // Flatten (* _Jean-François Alcover_, Feb 26 2017, after _Emeric Deutsch_ *)

%K nonn,tabl

%O 0,6

%A _N. J. A. Sloane_, Mar 22 2012

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 14 04:33 EDT 2024. Contains 372528 sequences. (Running on oeis4.)