The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A206499 The sum of the distances between all unordered pairs of branch vertices in the rooted tree with Matula-Goebel number n. A branch vertex is a vertex of degree >=3. 4

%I #20 Mar 07 2017 11:25:05

%S 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,

%T 0,0,0,0,0,0,0,1,1,0,0,0,0,0,2,0,0,1,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,2,

%U 0,1,0,0,1,0,0,1,0,1,0,0,0,0,0,1,0,1,0,0,0,0,2,1,0,0,0,0,0,4,0,0,1

%N The sum of the distances between all unordered pairs of branch vertices in the rooted tree with Matula-Goebel number n. A branch vertex is a vertex of degree >=3.

%C The Matula-Goebel number of a rooted tree can be defined in the following recursive manner: to the one-vertex tree there corresponds the number 1; to a tree T with root degree 1 there corresponds the t-th prime number, where t is the Matula-Goebel number of the tree obtained from T by deleting the edge emanating from the root; to a tree T with root degree m>=2 there corresponds the product of the Matula-Goebel numbers of the m branches of T.

%C The A. Ilic and M. Ilic reference considers the statistic: the sum of the distances between all unordered pairs of vertices of degree k (see A212618, A212619).

%D F. Goebel, On a 1-1 correspondence between rooted trees and natural numbers, J. Combin. Theory, B 29 (1980), 141-143.

%D I. Gutman and A. Ivic, On Matula numbers, Discrete Math., 150, 1996, 131-142.

%D I. Gutman and Y-N. Yeh, Deducing properties of trees from their Matula numbers, Publ. Inst. Math., 53 (67), 1993, 17-22.

%D D. W. Matula, A natural rooted tree enumeration by prime factorization, SIAM Review, 10, 1968, 273.

%H E. Deutsch, <a href="http://arxiv.org/abs/1111.4288"> Rooted tree statistics from Matula numbers</a>, arXiv:1111.4288.

%H A. Ilic and M. Ilic, <a href="http://arxiv.org/abs/1106.2986">Generalizations of Wiener polarity index and terminal Wiener index</a>, arXiv:11106.2986.

%H <a href="/index/Mat#matula">Index entries for sequences related to Matula-Goebel numbers</a>

%F Let bigomega(n) denote the number of prime divisors of n, counted with multiplicities. Let g(n)=g(n,x) be the generating polynomial of the branch vertices of the rooted tree with Matula-Goebel number n with respect to level. We have a(1) = 0; if n = p(t) (=the t-th prime) and bigomega(t) is not 2, then a(n) = a(t); if n = p(t) (=the t-th prime) and bigomega(t) = 2, then a(n) = a(t) + [dg(t)/dx]_{x=1}; if n = rs with r prime, bigomega(s) =/ 2, then a(n) = a(r) + a(s) + [d[g(r)g(s)]/dx]_{x=1}; if n=rs with r prime, bigomega(s)=2, then a(n)=a(r)+a(s)+ [d[g(r)g(s)]/dx]_{x=1} + [dg(r)/dx]_{x=1} + [dg(s)/dx]_{x=1}.

%e a(28)=1 because the rooted tree with Matula-Goebel number 28 is the rooted tree obtained by joining the trees I, I, and Y at their roots; it has 2 branch vertices and the distance between them is 1. a(49)=2 because the rooted tree with Matula-Goebel number 49 is the rooted tree obtained by joining two copies of Y at their roots; it has 2 branch vertices and the distance between them is 2.

%p with(numtheory): g := proc (n) local r, s: r := proc(n) options operator, arrow: op(1, factorset(n)) end proc: s := proc (n) options operator, arrow: n/r(n) end proc: if n = 1 then 0 elif bigomega(n) = 1 and bigomega(pi(n)) <> 2 then sort(expand(x*g(pi(n)))) elif bigomega(n) = 1 and bigomega(pi(n)) = 2 then sort(expand(x+x*g(pi(n)))) elif bigomega(r(n))+bigomega(s(n)) = 2 then sort(expand(g(r(n))-subs(x = 0, g(r(n)))+g(s(n))-subs(x = 0, g(s(n))))) else sort(expand(g(r(n))-subs(x = 0, g(r(n)))+g(s(n))-subs(x = 0, g(s(n)))+1)) end if end proc: a := proc (n) local r, s: r := proc (n) options operator, arrow: op(1, factorset(n)) end proc: s := proc (n) options operator, arrow: n/r(n) end proc: if n = 1 then 0 elif bigomega(n) = 1 and bigomega(pi(n)) <> 2 then a(pi(n)) elif bigomega(n) = 1 and bigomega(pi(n)) = 2 then a(pi(n))+subs(x = 1, diff(g(pi(n)), x)) elif bigomega(s(n)) = 2 then a(r(n))+a(s(n))+subs(x = 1, diff((1+g(r(n)))*(1+g(s(n))), x)) else a(r(n))+a(s(n))+subs(x = 1, diff(g(r(n))*g(s(n)), x)) end if end proc: seq(a(n), n = 1 .. 120);

%Y Cf. A212618, A212619.

%K nonn

%O 1,49

%A _Emeric Deutsch_, May 22 2012

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 6 22:00 EDT 2024. Contains 373134 sequences. (Running on oeis4.)