The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A200731 G.f. satisfies: A(x) = (1 + x*A(x)^3) * (1 + x^2*A(x)^6). 7
1, 1, 4, 22, 139, 953, 6894, 51796, 400269, 3161262, 25403536, 207043048, 1707345547, 14219399626, 119431172630, 1010495472960, 8604568715969, 73683710894255, 634142349130800, 5482062214763436, 47582484748270453, 414503778412715065, 3622792181209018168, 31758958747482608912 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
More generally, for fixed parameters p and q, if F(x) satisfies:
F(x) = exp( Sum_{n>=1} x^n * F(x)^(n*p)/n * [Sum_{k=0..n} C(n,k)^2 * x^k * F(x)^(k*q)] ),
then F(x) = (1 + x*F(x)^(p+1))*(1 + x^2*F(x)^(p+q+1)); here p=2, q=3.
LINKS
FORMULA
G.f. A(x) satisfies:
(1) a(n) = [x^n] (1 + x + x^2 + x^3)^(3*n+1) / (3*n+1).
(2) A(x) = ( (1/x)*Series_Reversion( x/(1 + x + x^2 + x^3)^3 ) )^(1/3).
(3) A( x/(1 + x + x^2 + x^3)^3 ) = 1 + x + x^2 + x^3.
(4) A(x) = G(x*A(x)^2) where G(x) = A(x/G(x)^2) = g.f. of A036765 (number of rooted trees with a degree constraint).
(5) A(x) = exp( Sum_{n>=1} x^n*A(x)^(2*n)/n * [Sum_{k=0..n} C(n,k)^2 * x^k*A(x)^(3*k)] ).
(6) A(x) = exp( Sum_{n>=1} x^n*A(x)^(2*n)/n * [(1-x*A(x)^2)^(2*n+1)*Sum_{k>=0} C(n+k,k)^2*x^k*A(x)^(3*k) )] ).
From Peter Bala, Jun 21 2015: (Start)
a(n) = 1/(3*n + 1)*Sum_{k = 0..floor(n/2)} binomial(3*n + 1,k)*binomial(3*n + 1,n - 2*k).
More generally, the coefficient of x^n in A(x)^r equals r/(3*n + r)*Sum_{k = 0..floor(n/2)} binomial(3*n + r,k)*binomial(3*n + r,n - 2*k) by the Lagrange-Bürmann formula.
O.g.f. A(x) = exp(Sum_{n >= 1} 1/3*b(n)x^n/n), where b(n) = Sum_{k = 0..floor(n/2)} binomial(3*n,k)*binomial(3*n,n - 2*k). Cf. A036765, A186241, A198951. (End)
Recurrence: 128*n*(2*n - 1)*(4*n - 1)*(4*n + 1)*(8*n - 3)*(8*n - 1)*(8*n + 1)*(8*n + 3)*(511073753*n^7 - 4871850365*n^6 + 19478089219*n^5 - 42349790393*n^4 + 54094962928*n^3 - 40605677522*n^2 + 16589611340*n - 2846611200)*a(n) = 3*(3*n - 2)*(3*n - 1)*(3047149994898003*n^13 - 32094344705469618*n^12 + 145743661212727337*n^11 - 373710048777443810*n^10 + 593788894662012231*n^9 - 600683242386376410*n^8 + 377600776651518819*n^7 - 130595257353511374*n^6 + 11334217618972546*n^5 + 8004135084547148*n^4 - 2618300200112616*n^3 + 152383960257264*n^2 + 33025238671680*n - 3264156403200)*a(n-1) - 576*(n-1)*(3*n - 5)*(3*n - 4)*(3*n - 2)*(3*n - 1)*(495741540410*n^10 - 3982082543435*n^9 + 12891395244590*n^8 - 21360691645174*n^7 + 18695904340190*n^6 - 7495052530111*n^5 + 212344193250*n^4 + 656210670544*n^3 - 106487698440*n^2 - 7969373424*n + 1477828800)*a(n-2) + 110592*(n-2)*(n-1)*(3*n - 8)*(3*n - 7)*(3*n - 5)*(3*n - 4)*(3*n - 2)*(3*n - 1)*(511073753*n^7 - 1294334094*n^6 + 979535842*n^5 - 149518418*n^4 - 72732399*n^3 + 16154432*n^2 + 843684*n - 192240)*a(n-3). - Vaclav Kotesovec, Nov 17 2017
a(n) ~ s/(2*sqrt(3*Pi*(4 - 9*r*s^2*(1 + r*s^3)))*n^(3/2)*r^n), where r = 0.1068159753611743655799981945670627355827110854720... and s = 1.345561337338583233012136458010090420775336284226... are real roots of the system of equations (1 + r*s^3)*(1 + r^2*s^6) = s, 3*r*s^2*(1 + 2*r*s^3 + 3*r^2*s^6) = 1. - Vaclav Kotesovec, Nov 22 2017
EXAMPLE
G.f.: A(x) = 1 + x + 4*x^2 + 22*x^3 + 139*x^4 + 953*x^5 + 6894*x^6 +...
where A(x) = (1 + x*A(x)^3)*(1 + x^2*A(x)^6).
Related expansions:
A(x)^3 = 1 + 3*x + 15*x^2 + 91*x^3 + 609*x^4 + 4335*x^5 + 32197*x^6 +...
A(x)^6 = 1 + 6*x + 39*x^2 + 272*x^3 + 1989*x^4 + 15054*x^5 + 116955*x^6 +...
A(x)^9 = 1 + 9*x + 72*x^2 + 570*x^3 + 4545*x^4 + 36639*x^5 + 298662*x^6 +...
where A(x) = 1 + x*A(x)^3 + x^2*A(x)^6 + x^3*A(x)^9.
The logarithm of the g.f. A = A(x) equals the series:
log(A(x)) = (1 + x*A^3)*x*A^2 + (1 + 2^2*x*A^3 + x^2*A^6)*x^2*A^4/2 +
(1 + 3^2*x*A^3 + 3^2*x^2*A^6 + x^3*A^9)*x^3*A^6/3 +
(1 + 4^2*x*A^3 + 6^2*x^2*A^6 + 4^2*x^3*A^9 + x^4*A^12)*x^4*A^8/4 +
(1 + 5^2*x*A^3 + 10^2*x^2*A^6 + 10^2*x^3*A^9 + 5^2*x^4*A^12 + x^5*A^15)*x^5*A^10/5 + ...
which involves squares of binomial coefficients.
MATHEMATICA
nmax = 23; sol = {a[0] -> 1};
Do[A[x_] = Sum[a[k] x^k, {k, 0, n}] /. sol; eq = CoefficientList[A[x] - (1 + x A[x]^3)*(1 + x^2 A[x]^6) + O[x]^(n + 1), x] == 0 /. sol; sol = sol ~Join~ Solve[eq][[1]], {n, 1, nmax}];
sol /. Rule -> Set;
a /@ Range[0, nmax] (* Jean-François Alcover, Nov 02 2019 *)
PROG
(PARI) {a(n)=polcoeff( ((1/x)*serreverse(x/(1 + x + x^2 + x^3 +x*O(x^n))^3))^(1/3), n)}
(PARI) {a(n)=polcoeff( (1 + x + x^2 + x^3 +x*O(x^n))^(3*n+1)/(3*n+1), n)}
(PARI) {a(n)=local(p=2, q=3, A=1+x); for(i=1, n, A=(1+x*A^(p+1))*(1+x^2*A^(p+q+1))+x*O(x^n)); polcoeff(A, n)}
(PARI) {a(n)=local(p=2, q=3, A=1+x); for(i=1, n, A=exp(sum(m=1, n, x^m*(A+x*O(x^n))^(p*m)/m*sum(j=0, m, binomial(m, j)^2*x^j*(A+x*O(x^n))^(q*j))))); polcoeff(A, n, x)}
(PARI) {a(n)=local(p=2, q=3, A=1+x); for(i=1, n, A=exp(sum(m=1, n, x^m*(A+x*O(x^n))^(p*m)/m*(1-x*A^q)^(2*m+1)*sum(j=0, n, binomial(m+j, j)^2*x^j*(A+x*O(x^n))^(q*j))))); polcoeff(A, n, x)}
CROSSREFS
Sequence in context: A188686 A025756 A366119 * A193116 A187254 A325453
KEYWORD
nonn,easy
AUTHOR
Paul D. Hanna, Nov 21 2011
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 19 14:45 EDT 2024. Contains 372698 sequences. (Running on oeis4.)