The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A198325 Irregular triangle read by rows: T(n,k) is the number of directed paths of length k (k>=1) in the rooted tree having Matula-Goebel number n (n>=2). 1
1, 2, 1, 2, 3, 2, 1, 3, 1, 3, 2, 3, 4, 2, 4, 2, 1, 4, 3, 2, 1, 4, 1, 4, 3, 1, 4, 2, 5, 3, 1, 4, 4, 3, 2, 5, 2, 4, 3, 5, 2, 1, 5, 3, 5, 3, 2, 1, 5, 4, 2, 5, 1, 6, 4, 2, 5, 3, 1, 6, 3, 5, 2, 5, 4, 2, 1, 6, 3, 1, 5, 4, 3, 2, 1, 5, 6, 4, 2, 1, 5, 3, 2, 6, 4, 1, 6, 2, 5, 4, 1, 5, 3, 6, 4, 1, 6, 2, 1, 5, 4, 3, 1, 6, 3, 5, 4, 2, 6, 3, 2, 1, 7, 4, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET
2,2
COMMENTS
A directed path of length k in a rooted tree is a sequence of k+1 vertices v[1], v[2], ..., v[k], v[k+1], such that v[j] is a child of v[j-1] for j = 2,3,...,k+1.
The Matula-Goebel number of a rooted tree can be defined in the following recursive manner: to the one-vertex tree there corresponds the number 1; to a tree T with root degree 1 there corresponds the t-th prime number, where t is the Matula-Goebel number of the tree obtained from T by deleting the edge emanating from the root; to a tree T with root degree m>=2 there corresponds the product of the Matula-Goebel numbers of the m branches of T.
Number of entries in row n is A109082(n) (n=2,3,...).
Sum of entries in row n is A196047(n).
Sum(k*T(n,k),k>=1)=A198326(n).
REFERENCES
I. Gutman and Yeong-Nan Yeh, Deducing properties of trees from their Matula numbers, Publ. Inst. Math., 53 (67), 1993, 17-22.
D. W. Matula, A natural rooted tree enumeration by prime factorization, SIAM Review, 10, 1968, 273.
LINKS
F. Goebel, On a 1-1-correspondence between rooted trees and natural numbers, J. Combin. Theory, B 29 (1980), 141-143.
I. Gutman and A. Ivic, On Matula numbers, Discrete Math., 150, 1996, 131-142.
FORMULA
We give the recursive construction of the row generating polynomials P(n)=P(n,x): P(1)=0; if n=p(t) (=the t-th prime), then P(n)=x*E(n)+x*P(t), where E denotes number of edges (computed recursively and programmed in A196050); if n=rs (r,s>=2), then P(n)=P(r)+P(s) (2nd Maple program yields P(n)).
EXAMPLE
T(7,1)=3 and T(7,2)=2 because the rooted tree with Matula-Goebel number 7 is the rooted tree Y, having 3 directed paths of length 1 (the edges) and 2 directed paths of length 2.
Triangle starts:
1;
2,1;
2;
3,2,1;
3,1;
3,2;
3;
MAPLE
with(numtheory): P := proc (n) local r, s, E: r := proc (n) options operator, arrow: op(1, factorset(n)) end proc: s := proc (n) options operator, arrow: n/r(n) end proc: E := proc (n) if n = 1 then 0 elif bigomega(n) = 1 then 1+E(pi(n)) else E(r(n))+E(s(n)) end if end proc: if n = 1 then 0 elif bigomega(n) = 1 then sort(expand(x*E(n)+x*P(pi(n)))) else sort(P(r(n)) +P(s(n))) end if end proc: T := proc (n, k) options operator, arrow: coeff(P(n), x, k) end proc: for n from 2 to 15 do seq(T(n, k), k = 1 .. degree(P(n))) end do; # yields sequence in triangular form
P(987654321); # yields P(987654321)
CROSSREFS
Sequence in context: A175328 A338776 A345933 * A293909 A002850 A355248
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, Nov 02 2011
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 3 03:48 EDT 2024. Contains 373054 sequences. (Running on oeis4.)