The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A195505 Numerator of Sum_{k=1..n} H(k)/k^2, where H(k) is the k-th harmonic number. 3

%I #34 May 10 2020 13:42:23

%S 1,11,341,2953,388853,403553,142339079,1163882707,31983746689,

%T 32452469713,43725835522403,44184852180503,97954699428176291,

%U 98731028315167091,99421162547987123,800313205356878959,3953829021224881128767,3973669953994085875967

%N Numerator of Sum_{k=1..n} H(k)/k^2, where H(k) is the k-th harmonic number.

%C Lim_{n-> infinity} (a(n)/A195506(n)) = 2*Zeta(3) [L. Euler].

%C Sum_{k = 1..n} H(k)/k^2 is an example of a multiple harmonic (star) sum. Euler's result Sum_{k = 1..inf} H(k)/k^2 = 2*zeta(3) was the first evaluation of a multiple zeta star value. - _Peter Bala_, Jan 31 2019

%H Seiichi Manyama, <a href="/A195505/b195505.txt">Table of n, a(n) for n = 1..768</a>

%H Leonhard Euler, <a href="http://eulerarchive.maa.org/pages/E477.html">Meditationes circa singulare serierum genus</a>, Novi. Comm. Acad. Sci. Petropolitanae, 20 (1775), 140-186.

%F From _Peter Bala_, Jan 31 2019: (Start)

%F Let S(n) = Sum_{k = 1..n} H(k)/k^2. Then

%F S(n) = 1 + (1 + 1/2^3)*(n-1)/(n+1) + (1/2^3 + 1/3^3)*(n-1)*(n-2)/((n+1)*(n+2)) + (1/3^3 + 1/4^3)*(n-1)*(n-2)*(n-3)/((n+1)*(n+2)*(n+3)) + ...

%F S(n)/n = 1 + (1/2^4 - 1)*(n-1)/(n+1) + (1/3^4 - 1/2^4)*(n-1)*(n-2)/((n+1)*(n+2)) + (1/4^4 - 1/3^4)*(n-1)*(n-2)*(n-3)/((n+1)*(n+2)*(n+3)) + ...

%F For odd n >= 3, 1/2*S((n-1)/2) = (n-1)/(n+1) + 1/2^3*(n-1)*(n-3)/((n+1)*(n+3)) + 1/3^3*(n-1)*(n-3)*(n-5)/((n+1)*(n+3)*(n+5)) + ....

%F Cf. A001008. See the Bala link in A036970. (End)

%e a(2) = 11 because 1 + (1 + 1/2)/2^2 = 11/8.

%e The first few fractions are 1, 11/8, 341/216, 2953/1728, 388853/216000, 403553/216000, 142339079/74088000, 1163882707/592704000, ... = A195505/A195506. - _Petros Hadjicostas_, May 06 2020

%t s = 0; Table[s = s + HarmonicNumber[n]/n^2; Numerator[s], {n, 20}] (* _T. D. Noe_, Sep 20 2011 *)

%o (PARI) H(n) = sum(k=1, n, 1/k);

%o a(n) = numerator(sum(k=1, n, H(k)/k^2)); \\ _Michel Marcus_, May 07 2020

%Y Cf. A001008, A002117, A036970, A195506 (denominators).

%K nonn,frac,easy

%O 1,2

%A _Franz Vrabec_, Sep 19 2011

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 2 21:38 EDT 2024. Contains 373051 sequences. (Running on oeis4.)