The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A193842 Triangular array: the fission of the polynomial sequence ((x+1)^n: n >= 0) by the polynomial sequence ((x+2)^n: n >= 0). (Fission is defined at Comments.) 27

%I #72 Sep 08 2022 08:45:58

%S 1,1,4,1,7,13,1,10,34,40,1,13,64,142,121,1,16,103,334,547,364,1,19,

%T 151,643,1549,2005,1093,1,22,208,1096,3478,6652,7108,3280,1,25,274,

%U 1720,6766,17086,27064,24604,9841,1,28,349,2542,11926,37384,78322,105796

%N Triangular array: the fission of the polynomial sequence ((x+1)^n: n >= 0) by the polynomial sequence ((x+2)^n: n >= 0). (Fission is defined at Comments.)

%C Suppose that p = p(n)*x^n + p(n-1)*x^(n-1) + ... + p(1)*x + p(0) is a polynomial and that Q is a sequence of polynomials:

%C ...

%C q(k,x) = t(k,0)*x^k + t(k,1)*x^(k-1) + ... + t(k,k-1)*x + t(k,k),

%C ...

%C for k = 0, 1, 2, ... The Q-downstep of p is the polynomial given by

%C ...

%C D(p) = p(n)*q(n-1,x) + p(n-1)*q(n-2,x) + ... + p(1)*q(0,x). (Note that p(0) does not appear. "Q-downstep" as just defined differs slightly from "Q-downstep" as defined for a different purpose at A193649.)

%C ...

%C Now suppose that P = (p(n,x): n >= 0) and Q = (q(n,x): n >= 0) are sequences of polynomials, where n indicates degree. The fission of P by Q, denoted by P^^Q, is introduced here as the sequence W = (w(n,x): n >= 0) of polynomials defined by w(0,x) = 1 and w(n,x) = D(p(n+1,x)).

%C ...

%C Strictly speaking, ^^ is an operation on sequences of polynomials. However, if P and Q are regarded as numerical triangles (of coefficients of polynomials), then ^^ can be regarded as an operation on numerical triangles. In this case, row n of P^^Q, for n > 0, is given by the matrix product P(n+1)*QQ(n), where P(n+1) =(p(n+1,n+1), p(n+1,n), ..., p(n+1,2), p(n+1,1)) and QQ(n) is the (n+1)-by-(n+1) matrix given by

%C ...

%C q(n,0) .. q(n,1)............. q(n,n-1) .... q(n,n)

%C 0 ....... q(n-1,0)........... q(n-1,n-2)... q(n-1,n-1)

%C 0 ....... 0.................. q(n-2,n-3) .. q(n-2,n-2)

%C ...

%C 0 ....... 0.................. q(1,0) ...... q(1,1)

%C 0 ....... 0 ................. 0 ........... q(0,0).

%C Here, the polynomial q(k,x) is taken to be

%C q(k,0)*x^k + q(k,1)x^(k-1) + ... + q(k,k)*x + q(k,k);

%C i.e., "q" is used instead of "t".

%C ...

%C Example: Let p(n,x) = (x+1)^n and q(n,x) = (x+2)^n. Then

%C ...

%C w(0,x) = 1 by the definition of W,

%C w(1,x) = D(p(2,x)) = 1*(x+2) + 2*1 = x + 4,

%C w(2,x) = D(p(3,x)) = 1*(x^2+4*x+4) + 3*(x+2) + 3*1 = x^2 + 7*x + 13,

%C w(3,x) = D(p(4,x)) = 1*(x^3+6*x^2+12*x+8) + 4*(x^2+4x+4) + 6*(x+2) + 4*1 = x^3 + 10*x^2 + 34*x + 40.

%C ...

%C From these first 4 polynomials in the sequence P^^Q, we can write the first 4 rows of P^^Q when P, Q, and P^^Q are regarded as triangles:

%C 1

%C 1...4

%C 1...7....13

%C 1...10...34...40

%C ...

%C In the following examples, r(P^^Q) is the mirror of P^^Q, obtained by reversing the rows of P^^Q. Let u denote the polynomial x^n + x^(n-1) + ... + x + 1.

%C ...

%C ..P........Q...........P^^Q........r(P^^Q)

%C (x+1)^n....(x+2)^n.....A193842.....A193843

%C (x+1)^n....(x+1)^n.....A193844.....A193845

%C (x+2)^n....(x+1)^n.....A193846.....A193847

%C (2x+1)^n...(x+1)^n.....A193856.....A193857

%C (x+1)^n....(2x+1)^n....A193858.....A193859

%C (x+1)^n.......u........A054143.....A104709

%C ..u........(x+1)^n.....A074909.....A074909

%C ..u...........u........A002260.....A004736

%C (x+2)^n.......u........A193850.....A193851

%C ..u.........(x+2)^n....A193844.....A193845

%C (2x+1)^n......u........A193860.....A193861

%C ..u.........(2x+1)^n...A115068.....A193862

%C ...

%C Regarding A193842,

%C col 1 ...... A000012

%C col 2 ...... A016777

%C col 3 ...... A081271

%C w(n,n) ..... A003462

%C w(n,n-1) ... A014915

%H G. C. Greubel, <a href="/A193842/b193842.txt">Rows n = 0..100 of triangle, flattened</a>

%H Digital Library of Mathematical Functions, <a href="http://dlmf.nist.gov/15.2#ii">Hypergeometric function, analytic properties</a>.

%H Clark Kimberling, <a href="https://www.fq.math.ca/Papers1/52-3/Kimberling11132013.pdf">Fusion, Fission, and Factors</a>, Fib. Q., 52(3) (2014), 195-202.

%F From _Peter Bala_, Jul 16 2013: (Start)

%F T(n,k) = Sum_{i = 0..k} 3^(k-i)*binomial(n-i,k-i).

%F O.g.f.: 1/((1 - x*t)*(1 - (1 + 3*x)*t)) = 1 + (1 + 4*x)*t + (1 + 7*x + 13*x^2)*t^2 + ....

%F The n-th row polynomial is R(n,x) = (1/(2*x + 1))*((3*x + 1)^(n+1) - x^(n+1)). (End)

%F T(n,k) = T(n-1,k) + 4*T(n-1,k-1) - T(n-2,k-1) - 3*T(n-2,k-2), T(0,0) = 1, T(1,0) = 1, T(1,1) = 4, T(n,k) = 0 if k < 0 or if k > n. - _Philippe Deléham_, Jan 17 2014

%F T(n,k) = 3^k * C(n,k) * hyp2F1(1, -k, -n, 1/3) with or without the additional term -0^(n-k)/2 depending on the exact definition of the hypergeometric function used. Compare formulas 15.2.5 and 15.2.6 in the DLMF reference. - _Peter Luschny_, Jul 23 2014

%e First six rows, for 0 <= k <= n and 0 <= n <= 5:

%e 1

%e 1...4

%e 1...7....13

%e 1...10...34....40

%e 1...13...64....142...121

%e 1...16...103...334...547...364

%p fission := proc(p, q, n) local d, k;

%p p(n+1,0)*q(n,x)+add(coeff(p(n+1,x),x^k)*q(n-k,x), k=1..n);

%p seq(coeff(%,x,n-k), k=0..n) end:

%p A193842_row := n -> fission((n,x) -> (x+1)^n, (n,x) -> (x+2)^n, n);

%p for n from 0 to 5 do A193842_row(n) od; # _Peter Luschny_, Jul 23 2014

%p # Alternatively:

%p p := (n,x) -> add(x^k*(1+3*x)^(n-k),k=0..n): for n from 0 to 7 do [n], PolynomialTools:-CoefficientList(p(n,x), x) od; # _Peter Luschny_, Jun 18 2017

%t (* First program *)

%t z = 10;

%t p[n_, x_] := (x + 1)^n;

%t q[n_, x_] := (x + 2)^n

%t p1[n_, k_] := Coefficient[p[n, x], x^k];

%t p1[n_, 0] := p[n, x] /. x -> 0;

%t d[n_, x_] := Sum[p1[n, k]*q[n - 1 - k, x], {k, 0, n - 1}]

%t h[n_] := CoefficientList[d[n, x], {x}]

%t TableForm[Table[Reverse[h[n]], {n, 0, z}]]

%t Flatten[Table[Reverse[h[n]], {n, -1, z}]] (* A193842 *)

%t TableForm[Table[h[n], {n, 0, z}]] (* A193843 *)

%t Flatten[Table[h[n], {n, -1, z}]]

%t (* Second program *)

%t Table[SeriesCoefficient[((x+3)^(n+1) -1)/(x+2), {x,0,n-k}], {n,0,10}, {k,0,n}]//Flatten (* _G. C. Greubel_, Feb 18 2020 *)

%o (Sage)

%o from mpmath import mp, hyp2f1

%o mp.dps = 100; mp.pretty = True

%o def T(n,k):

%o return 3^k*binomial(n,k)*hyp2f1(1,-k,-n,1/3)-0^(n-k)//2

%o for n in range(7):

%o print([int(T(n,k)) for k in (0..n)]) # _Peter Luschny_, Jul 23 2014

%o (Sage) # Second program using the 'fission' operation.

%o def fission(p, q, n):

%o F = p(n+1,0)*q(n,x)+add(expand(p(n+1,x)).coefficient(x,k)*q(n-k,x) for k in (1..n))

%o return [expand(F).coefficient(x,n-k) for k in (0..n)]

%o A193842_row = lambda k: fission(lambda n,x: (x+1)^n, lambda n,x: (x+2)^n, k)

%o for n in range(7): A193842_row(n) # _Peter Luschny_, Jul 23 2014

%o (PARI) T(n,k) = sum(j=0,k, 3^(k-j)*binomial(n-j,k-j)); \\ _G. C. Greubel_, Feb 18 2020

%o (Magma) [ (&+[3^(k-j)*Binomial(n-j,k-j): j in [0..k]]): k in [0..n], n in [0..10]]; // _G. C. Greubel_, Feb 18 2020

%Y Cf. A193722 (fusion of P by Q), A193649 (Q-residue), A193843 (mirror of A193842).

%K nonn,tabl

%O 0,3

%A _Clark Kimberling_, Aug 07 2011

%E Name and Comments edited by _Petros Hadjicostas_, Jun 05 2020

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 16 12:41 EDT 2024. Contains 372552 sequences. (Running on oeis4.)