The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A193405 The Matula numbers of the rooted trees that have a perfect matching. 3
2, 5, 6, 15, 18, 22, 23, 26, 31, 41, 45, 54, 55, 65, 66, 69, 78, 93, 94, 103, 122, 123, 135, 137, 158, 162, 165, 166, 167, 195, 198, 202, 207, 211, 234, 235, 242, 253, 254, 279, 282, 283, 286, 299, 305, 309, 338, 341, 358, 366, 369, 394, 395, 401, 403, 405, 411, 415, 419, 431, 451, 474, 486, 495, 498 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
The Matula-Goebel number of a rooted tree can be defined in the following recursive manner: to the one-vertex tree there corresponds the number 1; to a tree T with root degree 1 there corresponds the t-th prime number, where t is the Matula-Goebel number of the tree obtained from T by deleting the edge emanating from the root; to a tree T with root degree m>=2 there corresponds the product of the Matula-Goebel numbers of the m branches of T.
It is known that a tree has at most one perfect matching.
Complement of A193406.
REFERENCES
C. D. Godsil, Algebraic Combinatorics, Chapman & Hall, New York, 1993.
LINKS
É. Czabarka, L. Székely, and S. Wagner, The inverse problem for certain tree parameters, Discrete Appl. Math., 157, 2009, 3314-3319.
E. Deutsch, Rooted tree statistics from Matula numbers, arXiv:1111.4288 [math.CO], 2011.
F. Goebel, On a 1-1-correspondence between rooted trees and natural numbers, J. Combin. Theory, B 29 (1980), 141-143.
I. Gutman and A. Ivic, On Matula numbers, Discrete Math., 150, 1996, 131-142.
I. Gutman and Yeong-Nan Yeh, Deducing properties of trees from their Matula numbers, Publ. Inst. Math., 53 (67), 1993, 17-22.
D. W. Matula, A natural rooted tree enumeration by prime factorization, SIAM Rev. 10 (1968) 273.
FORMULA
Define b(n) (c(n)) to be the generating polynomials of the matchings of the rooted tree with Matula-Goebel number n that contain (do not contain) the root, with respect to the size of the matching. We have the following recurrence for the pair M(n)=[b(n),c(n)]. M(1)=[0,1]; if n=p(t) (=the t-th prime), then M(n)=[xc(t),b(t)+c(t)]; if n=rs (r,s,>=2), then M(n)=[b(r)c(s)+c(r)b(s), c(r)c(s)]. Then m(n)=b(n)+c(n) is the generating polynomial of the matchings of the rooted tree with respect to the size of the matchings (a modified matching polynomial). The tree has a perfect matching if and only if the degree of this polynomial is 1/2 of the number of vertices of the tree.
EXAMPLE
2,6,31 are in the sequence because they are the Matula numbers of the paths on 2,4,6 vertices, respectively.
MAPLE
with(numtheory): N := proc (n) local r, s: r := proc (n) options operator, arrow: op(1, factorset(n)) end proc: s := proc (n) options operator, arrow: n/r(n) end proc: if n = 1 then 1 elif bigomega(n) = 1 then 1+N(pi(n)) else N(r(n))+N(s(n))-1 end if end proc: M := proc (n) local r, s: r := proc (n) options operator, arrow: op(1, factorset(n)) end proc: s := proc (n) options operator, arrow: n/r(n) end proc: if n = 1 then [0, 1] elif bigomega(n) = 1 then [x*M(pi(n))[2], M(pi(n))[1]+M(pi(n))[2]] else [M(r(n))[1]*M(s(n))[2]+M(r(n))[2]*M(s(n))[1], M(r(n))[2]*M(s(n))[2]] end if end proc: m := proc (n) options operator, arrow: sort(expand(M(n)[1]+M(n)[2])) end proc: PM := {}: for n to 500 do if N(n) = 2*degree(m(n)) then PM := `union`(PM, {n}) else end if end do: PM;
CROSSREFS
Sequence in context: A287203 A291211 A193402 * A037079 A101325 A042980
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Feb 12 2012
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 23 11:57 EDT 2024. Contains 372763 sequences. (Running on oeis4.)