The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A192620 G.f. satisfies: A(x) = Product_{n>=1} (1 + x^n*A(x))^2/(1 - x^n*A(x))^2. 5
1, 4, 28, 224, 1948, 17928, 171776, 1695872, 17133436, 176297668, 1841222776, 19467629120, 207978652416, 2241618514120, 24345336854400, 266168049520832, 2927074607294300, 32356419163487336, 359330087240388828, 4007079691584624576 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
Related q-series (Heine) identity:
1 + Sum_{n>=1} x^n*Product_{k=0..n-1} (y+q^k)*(z+q^k)/((1-x*q^k)*(1-q^(k+1)) = Product_{n>=0} (1+x*y*q^n)*(1+x*z*q^n)/((1-x*q^n)*(1-x*y*z*q^n)); here q=x, x=x*A(x), y=z=1.
LINKS
FORMULA
G.f. A(x) satisfies:
(1) A(x) = 1 + Sum_{n>=1} x^n*A(x)^n * Product_{k=1..n} (1+x^(k-1))^2/((1-x^k*A(x))*(1-x^k), due to the Heine identity.
(2) A(x)^(1/2) = 1 + Sum_{n>=1} x^n*A(x)^n * Product_{k=1..n} (1+x^(k-1))/(1-x^k), due to the q-binomial theorem.
Equals the self-convolution of A192621.
a(n) ~ c * d^n / n^(3/2), where d = 12.042513458183758627924432194393539477581... and c = 1.04958502741924123967536156787764354342367951743839... - Vaclav Kotesovec, Oct 04 2023
Radius of convergence r = 0.083039143238027913107320323917684421045... = 1/d and A(r) = 2.638555772492608872250287025192536127217... satisfy A(r) = 1 / Sum_{n>=1} 4*r^n/(1 - r^(2*n)*A(r)^2) and A(r) = Product_{n>=1} (1 + r^n*A(r))^2/(1 - r^n*A(r))^2. - Paul D. Hanna, Mar 02 2024
EXAMPLE
G.f.: A(x) = 1 + 4*x + 28*x^2 + 224*x^3 + 1948*x^4 + 17928*x^5 + ...
The g.f. A = A(x) satisfies the following relations:
(0) A = (1+x*A)^2/(1-x*A)^2 * (1+x^2*A)^2/(1-x^2*A)^2 * (1+x^3*A)^2/(1-x^3*A)^2 * ...
(1) A = 1 + 4*x*A/((1-x*A)*(1-x)) + 4*x^2*A^2*(1+x)^2/((1-x*A)*(1-x^2*A)*(1-x)*(1-x^2)) + 4*x^3*A^3*(1+x)^2*(1+x^2)^2/((1-x*A)*(1-x^2*A)*(1-x^3*A)*(1-x)*(1-x^2)*(1-x^3)) + ...
(2) A^(1/2) = 1 + 2*x*A/(1-x) + 2*x^2*A^2*(1+x)/((1-x)*(1-x^2)) + 2*x^3*A^3*(1+x)*(1+x^2)/((1-x)*(1-x^2)*(1-x^3)) + ...
MATHEMATICA
nmax = 30; A[_] = 0; Do[A[x_] = Product[(1 + x^k*A[x])^2/(1 - x^k*A[x])^2, {k, 1, nmax}] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] (* Vaclav Kotesovec, Oct 04 2023 *)
(* Calculation of constants {d, c}: *) Chop[{1/r, Sqrt[(r*s^(3/2)*((-1 + s)*Derivative[0, 1][QPochhammer][-s, r] + Sqrt[s]*(1 + s)*Derivative[0, 1][QPochhammer][s, r]))/(2* Pi*(1 + s)*QPochhammer[s, r]* (2* s*((1 + s^2)/(-1 + s^2)^2) + (QPolyGamma[1, Log[-s]/Log[r], r] - QPolyGamma[1, Log[s]/Log[r], r])/ Log[r]^2))]} /. FindRoot[{(-1 + s)^2*(QPochhammer[-s, r]^2/((1 + s)^2*QPochhammer[s, r]^2)) == s, 1 - 4*(s/(-1 + s^2)) + (2*(QPolyGamma[0, Log[-s]/Log[r], r] - QPolyGamma[0, Log[s]/Log[r], r]))/Log[r] == 0}, {r, 1/12}, {s, 2}, WorkingPrecision -> 120]] (* Vaclav Kotesovec, Mar 03 2024 *)
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=prod(k=1, n, (1+x^k*A)^2/(1-x^k*A+x*O(x^n))^2)); polcoeff(A, n)}
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=1+sum(m=1, n, x^m*A^m*prod(k=1, m, (1+x^(k-1))^2/((1-x^k*A+x*O(x^n))*(1-x^k))))); polcoeff(A, n)}
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=(1+sum(m=1, n, x^m*A^m*prod(k=1, m, (1+x^(k-1))/(1-x^k+x*O(x^n)))))^2); polcoeff(A, n)}
CROSSREFS
Sequence in context: A371755 A121203 A368234 * A180708 A370187 A191094
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 06 2011
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 2 15:24 EDT 2024. Contains 373040 sequences. (Running on oeis4.)