The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A183109 Triangle read by rows: T(n,m) = number of n X m binary matrices with no zero rows or columns (n >= 1, 1 <= m <= n). 15

%I #67 Jan 15 2024 18:34:21

%S 1,1,7,1,25,265,1,79,2161,41503,1,241,16081,693601,24997921,1,727,

%T 115465,10924399,831719761,57366997447,1,2185,816985,167578321,

%U 26666530801,3776451407065,505874809287625

%N Triangle read by rows: T(n,m) = number of n X m binary matrices with no zero rows or columns (n >= 1, 1 <= m <= n).

%C T(n,m) = T(m,n) is also the number of complete alignments between two strings of sizes m and n, respectively; i.e. the number of complete matchings in a bipartite graph

%C From _Manfred Boergens_, Jul 25 2021: (Start)

%C The matrices in the definition are a superset of the matrices in the comment to A019538 by Manfred Boergens.

%C Number of coverings of an n-element set by m nonempty subsets (not necessarily disjunct). For the disjunct case cf. A019538. (End)

%H Indranil Ghosh, <a href="/A183109/b183109.txt">Rows 1..50, flattened</a>

%H Ch. A. Charalambides, <a href="https://doi.org/10.1016/0012-365X(79)90108-0">A problem of arrangements on chessboards and generalizations</a>, Discrete Mathematics 27.2 (1979): 179-186. (Generalizations.)

%H D. E. Knuth, <a href="http://dx.doi.org/10.2307/27642039">Problem 11243</a>, Am. Math. Montly 113 (8) (2006) page 759.

%H John Riordan and Paul R. Stein, <a href="https://doi.org/10.1016/0097-3165(72)90084-2">Arrangements on chessboards</a>, Journal of Combinatorial Theory, Series A 12.1 (1972): 72-80. See Table page 78.

%F T(n,m) = Sum_{j=0..m}(-1)^j*C(m, j)*(2^(m-j)-1)^n.

%F Recursion: T(m,n) = Sum_{k=1..m} T(k,n-1)*C(m,k)*2^k - T(m,n-1).

%F From _Robert FERREOL_, Mar 14 2017: (Start)

%F T(n,m) = Sum_{i = 0 .. n,j = 0 ..m}(-1)^(n+m+i+j)*C(n,i)*C(m,j)*2^(i*j).

%F Inverse formula of: 2^(n*m) = Sum_{i = 0 .. n , j = 0 ..m} C(n,i)*C(m,j)*T(i,j). (End)

%F A019538(j) <= a(j). - _Manfred Boergens_, Jul 25 2021

%e Triangle begins:

%e 1;

%e 1, 7;

%e 1, 25, 265;

%e 1, 79, 2161, 41503;

%e 1, 241, 16081, 693601, 24997921;

%e 1, 727, 115465, 10924399, 831719761, 57366997447;

%e 1, 2185, 816985, 167578321, 26666530801, 3776451407065, 505874809287625;

%e ...

%p A183109 := proc(n,m)

%p add((-1)^j*binomial(m,j)*(2^(m-j)-1)^n,j=0..m) ;

%p end proc:

%p seq(seq(A183109(n,m),m=1..n),n=1..10) ; # _R. J. Mathar_, Dec 03 2015

%t Flatten[Table[Sum[ (-1)^j*Binomial[m, j]*(2^(m - j) - 1)^n, {j, 0, m}], {n, 1, 7}, {m, 1, n}]] (* _Indranil Ghosh_, Mar 14 2017 *)

%o (PARI) tabl(nn) = {for(n=1, nn, for(m = 1, n, print1(sum(j=0, m, (-1)^j*binomial(m, j)*(2^(m - j) - 1)^n),", ");); print(););};

%o tabl(8); \\ _Indranil Ghosh_, Mar 14 2017

%o (Python)

%o import math

%o f = math.factorial

%o def C(n,r): return f(n)//f(r)//f(n - r)

%o def T(n,m):

%o return sum((-1)**j*C(m,j)*(2**(m - j) - 1)**n for j in range (m+1))

%o i=1

%o for n in range(1,21):

%o for m in range(1, n+1):

%o print(str(i)+" "+str(T(n, m)))

%o i+=1 # _Indranil Ghosh_, Mar 14 2017

%Y Cf. A058482 (this gives the general formula, but values only for m=3).

%Y Main diagonal gives A048291.

%Y Column 2 is A058481.

%Y Cf. A019538.

%K nonn,tabl

%O 1,3

%A _Steffen Eger_, Feb 01 2011

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 15 06:57 EDT 2024. Contains 372538 sequences. (Running on oeis4.)