The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A181544 Triangle in which the g.f. for row n is [Sum_{k>=0} C(n+k-1,k)^3*x^k]*(1-x)^(3n+1), read by rows of k=0..2n terms. 10

%I #40 May 22 2024 12:56:08

%S 1,1,4,1,1,20,48,20,1,1,54,405,760,405,54,1,1,112,1828,8464,13840,

%T 8464,1828,112,1,1,200,5925,52800,182700,273504,182700,52800,5925,200,

%U 1,1,324,15606,233300,1424925,4050864,5703096,4050864,1424925,233300,15606,324,1,1,490,35623,818300,7917371,37215794,91789005,123519792,91789005,37215794,7917371,818300,35623,490,1,1,704,73200,2430400,34657700,246781248,955910032,2116980800,2751843600,2116980800,955910032,246781248,34657700,2430400,73200,704,1

%N Triangle in which the g.f. for row n is [Sum_{k>=0} C(n+k-1,k)^3*x^k]*(1-x)^(3n+1), read by rows of k=0..2n terms.

%H Paul D. Hanna, <a href="/A181544/b181544.txt">Table of n, a(n) for n = 0..1088, as a flattened triangle of rows 0..32</a>

%H Ilia Gaiur, Vladimir Rubtsov, and Duco van Straten, <a href="https://arxiv.org/abs/2405.03015">Product formulas for the Higher Bessel functions</a>, arXiv:2405.03015 [math.AG], 2024. See p. 18.

%F Row sums equal A006480(n) = (3n)!/(n!)^3, which is de Bruijn's s(3,n).

%F From _Yahia Kahloune_, Jan 30 2014: (Start)

%F Using these coefficients we can obtain formulas for the sums

%F Sum_{i=1..n} C(e-1+i,e)^3. Let us define b(k,e,3) = sum_{i=0..k-e} (-1)^i*C(3*e+1,i)*C(k-i,e)^3, where k=e+i.

%F For example:

%F b(e,e,3) = 1;

%F b(e+1,e,3) = (e+1)^3-(3*e+1) = e^2*(e+3);

%F b(e+2,e,3) = C(e+2,2)^3 - (3*e+1)*(e+1)^3 + C(3*e+1,2);

%F b(e+3,e,3) = C(e+3,e)^3 - (3*e+1)*C(e+2,e)^3 + C(3*e+1,2)*C(e+1,e)^3 - C(3*e+1,3);

%F b(e+4,e,3) = C(e+4,e)^3 - (3*e+1)*C(e+3,e)^3 + C(3*e+1,2)*C(e+2,e) - C(3*e+1,3)*C(e+1,e)^3 + C(3*e+1,4).

%F Then we have the formula: Sum_{i=1..n} C(e-1+i,e)^3 = Sum_{i=0..2*e} b(e+i,e,3)*C(n+e+i,3*e+1).

%F Example: Sum_{i=1..7} C(2+i,3)^3 = C(10,10) + 54*C(11,10) + 405*C(12,10) + 760*C(13,10) + 405*C(14,10) + 54*C(15,10) + C(16,10) = 820260.

%F (End)

%e Triangle begins:

%e 1;

%e 1, 4, 1;

%e 1, 20, 48, 20, 1;

%e 1, 54, 405, 760, 405, 54, 1;

%e 1, 112, 1828, 8464, 13840, 8464, 1828, 112, 1;

%e 1, 200, 5925, 52800, 182700, 273504, 182700, 52800, 5925, 200, 1;

%e 1, 324, 15606, 233300, 1424925, 4050864, 5703096, 4050864, 1424925, 233300, 15606, 324, 1; ...

%e Row g.f.s begin:

%e (1) = (1-x)*(1 + x + x^2 + x^3 + x^4 +...);

%e (1 + 4*x + x^2) = (1-x)^4*(1 + 2^3*x + 3^3*x^2 + 4^3*x^3 +...);

%e (1 + 20*x + 48*x^2 + 20*x^3 + x^4) = (1-x)^7*(1 + 3^3*x + 6^3*x^2 +...);

%e (1 + 54*x + 405*x^2 + 760*x^3 + 405*x^4 + 54*x^5 + x^6) = (1-x)^10*(1 + 4^3*x + 10^3*x^2 + 20^3*x^3 + 35^3*x^4 +...); ...

%t t[n_, k_] := SeriesCoefficient[Sum[Binomial[n+j, j]^3*x^j, {j, 0, n+k}]*(1-x)^(3*n+1), {x,0, k}]; Table[t[n, k], {n, 0, 9}, {k, 0, 2*n}] // Flatten (* _Jean-François Alcover_, Feb 04 2014, after PARI *)

%o (PARI) {T(n,k)=polcoeff(sum(j=0,n+k,binomial(n+j,j)^3*x^j)*(1-x)^(3*n+1),k)}

%o for(n=0,10,for(k=0,2*n,print1(T(n,k),", "));print(""))

%Y Cf. A181543, A181545, A006480, A002897, A000172.

%Y Cf. A183204 (central terms), A183205.

%K nonn,tabf,changed

%O 0,3

%A _Paul D. Hanna_, Oct 30 2010

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 2 11:11 EDT 2024. Contains 373040 sequences. (Running on oeis4.)