The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A181308 Triangle read by rows: T(n,k) is the number of 2-compositions of n having k columns with an odd sum (0<=k<=n). A 2-composition of n is a nonnegative matrix with two rows, such that each column has at least one nonzero entry and whose entries sum up to n. 3
1, 0, 2, 3, 0, 4, 0, 16, 0, 8, 14, 0, 52, 0, 16, 0, 104, 0, 144, 0, 32, 64, 0, 460, 0, 368, 0, 64, 0, 616, 0, 1624, 0, 896, 0, 128, 292, 0, 3428, 0, 5056, 0, 2112, 0, 256, 0, 3456, 0, 14688, 0, 14528, 0, 4864, 0, 512, 1332, 0, 23132, 0, 53920, 0, 39488, 0, 11008, 0, 1024, 0 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
The sum of entries in row n is A003480(n).
T(n,k) = 0 if n and k have opposite parities.
T(2n,0) = A060801(n).
Sum(k*T(n,k), k=0..n) = A181326(n).
For the statistic "number of column with an even sum" see A181327.
LINKS
G. Castiglione, A. Frosini, E. Munarini, A. Restivo and S. Rinaldi, Combinatorial aspects of L-convex polyominoes, European J. Combin. 28 (2007), no. 6, 1724-1741.
FORMULA
G.f.: G(t,z) = (1-z)^2*(1+z)^2/(1-5z^2+2z^4-2tz).
The g.f. of column k is (2z)^k*(1-z^2)^2/(1-5z^2+2z^4)^{k+1} (we have a Riordan array).
The g.f. H(t,s,z), where z marks size and t (s) marks number of columns with an odd (even) sum, is H=(1-z^2)^2/(1-2z^2+z^4-2tz-3sz^2+sz^4).
EXAMPLE
T(2,2) = 4 because we have (1,0/0,1), (0,1/1,0), (1,1/0,0), and (0,0/1,1) (the 2-compositions are written as (top row/bottom row)).
Triangle starts:
1;
0, 2;
3, 0, 4;
0, 16, 0, 8;
14, 0, 52, 0, 16;
MAPLE
G := (1-z^2)^2/(1-5*z^2+2*z^4-2*t*z): Gser := simplify(series(G, z = 0, 15)): for n from 0 to 11 do P[n] := sort(coeff(Gser, z, n)) end do; for n from 0 to 11 do seq(coeff(P[n], t, k), k = 0 .. n) end do; # yields sequence in triangular form
# second Maple program:
b:= proc(n) option remember; `if`(n=0, 1,
expand(add(add(`if`(i=0 and j=0, 0, b(n-i-j)*
`if`(irem(i+j, 2)=1, x, 1)), i=0..n-j), j=0..n)))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n)):
seq(T(n), n=0..15); # Alois P. Heinz, Mar 16 2014
MATHEMATICA
b[n_] := b[n] = If[n == 0, 1, Expand[Sum[Sum[If[i == 0 && j == 0, 0, b[n-i-j]* If[Mod[i+j, 2] == 1, x, 1]], {i, 0, n-j}], {j, 0, n}]]]; T[n_] := Function[{p}, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n]]; Table[T[n], {n, 0, 15}] // Flatten (* Jean-François Alcover, Feb 19 2015, after Alois P. Heinz *)
CROSSREFS
Sequence in context: A293275 A014197 A341825 * A292246 A277141 A021438
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, Oct 13 2010
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 2 21:38 EDT 2024. Contains 373051 sequences. (Running on oeis4.)