The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A181048 Decimal expansion of (log(1+sqrt(2))+Pi/2)/(2*sqrt(2)) = Sum_{k>=0} (-1)^k/(4*k+1). 11

%I #54 Mar 04 2024 01:18:49

%S 8,6,6,9,7,2,9,8,7,3,3,9,9,1,1,0,3,7,5,7,3,9,9,5,1,6,3,8,8,2,8,7,0,7,

%T 1,3,6,5,2,1,7,5,3,6,7,3,4,5,2,4,4,9,0,4,3,3,5,0,3,1,8,3,8,9,1,7,6,3,

%U 9,3,5,1,4,1,0,9,4,1,3,2,9,0,5,5,7,5,0,4,0,3,4,6,3,4,0,8,9,6,8,7,0,5,2,1,8

%N Decimal expansion of (log(1+sqrt(2))+Pi/2)/(2*sqrt(2)) = Sum_{k>=0} (-1)^k/(4*k+1).

%D Jolley, Summation of Series, Dover (1961) eq 82 page 16.

%D Murray R. Spiegel, Seymour Lipschutz, John Liu. Mathematical Handbook of Formulas and Tables, 3rd Ed. Schaum's Outline Series. New York: McGraw-Hill (2009): p. 135, equation 21.17

%H Ivan Panchenko, <a href="/A181048/b181048.txt">Table of n, a(n) for n = 0..1000</a>

%H J. M. Borwein, P. B. Borwein, and K. Dilcher, <a href="http://www.jstor.org/stable/2324715">Pi, Euler numbers and asymptotic expansions</a>, Amer. Math. Monthly, 96 (1989), 681-687.

%H Eric W. Weisstein, <a href="https://mathworld.wolfram.com/EulersSeriesTransformation.html">Euler's Series Transformation</a>.

%H Herbert S. Wilf, <a href="https://doi.org/10.46298/dmtcs.265">Accelerated series for universal constants, by the WZ method</a>, Discrete Mathematics & Theoretical Computer Science, Vol 3, No 4 (1999).

%F Equals (A093954 + A091648/sqrt(2))/2.

%F Integral_{x = 0..1} 1/(1+x^4) = Sum_(k >= 0} (-1)^k/(4*k+1) = (log(1+sqrt(2)) + Pi/2)/(2*sqrt(2)).

%F 1 - 1/5 + 1/9 - 1/13 + 1/17 - ... = (Pi*sqrt(2))/8 + (sqrt(2)*log(1 + sqrt(2)))/4 = (Pi + 2*log(1 + sqrt(2)))/(4 sqrt(2)). The first two are the formulas as given in Spiegel et al., the third is how Mathematica rewrites the infinite sum. - _Alonso del Arte_, Aug 11 2011

%F Let N be a positive integer divisible by 4. We have the asymptotic expansion 2*( (log(1 + sqrt(2)) + Pi/2)/(2*sqrt(2)) - Sum_{k = 0..N/4 - 1} (-1)^k/(4*k + 1) ) ~ 1/N + 1/N^2 - 3/N^3 - 11/N^4 + 57/N^5 + 361/N^6 - - ..., where the sequence of coefficients [1, 1, -3, -11, 57, 361, ...] is A188458. This follows from Borwein et al., Lemma 2 with f(x) = 1/x and then set x = N/4 and h = 1/4. An example is given below. Cf. A181049. - _Peter Bala_, Sep 23 2016

%F Equals Sum_{n >= 0} 2^(n-1)*n!/(Product_{k = 0..n} 4*k + 1) = Sum_{n >= 0} 2^(n-1)*n!/A007696(n+1) (apply Euler's series transformation to Sum_{k >= 0} (-1)^k/(4*k + 1)). - _Peter Bala_, Dec 01 2021

%F From _Peter Bala_, Oct 23 2023: (Start)

%F The slowly converging series representation Sum_{n >= 0} (-1)^n/(4*n + 1) for the constant can be accelerated to give the following faster converging series:

%F 1/2 + 2*Sum_{n >= 0} (-1)^n/((4*n + 1)(4*n + 5));

%F 7/10 + 8*Sum_{n >= 0} (-1)^n/((4*n + 1)(4*n + 5)*(4*n + 9));

%F 71/90 + 48*Sum_{n >= 0} (-1)^n/((4*n + 1)(4*n + 5)*(4*n + 9)*(4*n + 13));

%F 971/1170 + 384*Sum_{n >= 0} (-1)^n/((4*n + 1)(4*n + 5)*(4*n + 9)*(4*n + 13)*(4*n + 17)).

%F These results may be easily verified by taking the partial fraction expansions of the summands. The general result appears to be that for r >= 0, the constant equals

%F C(r) + (2^r)*r!*Sum_{n >= 0} (-1)^n/((4*n + 1)*(4*n + 5)*...*(4*n + 4*r + 1)), where C(r) is the rational number Sum_{k = 0..r-1} 2^(k-1)*k!/(1*5*9*...*(4*k + 1)). [added 19 Feb 2024: the general result can be proved by the WZ method as described in Wilf.]

%F In the limit as r -> oo we find that the constant equals Sum_{k >= 0} 2^(k-1)*k!/(Product_{i = 0..k} 4*i + 1) as noted above. (End)

%F From _Peter Bala_, Mar 03 2024: (Start)

%F Continued fraction: 1/(1 + 1^2/(4 + 5^2/(4 + 9^2/(4 + 13^2/(4 + ... ))))) due to Euler.

%F Equals hypergeom([1/4, 1], [5/4], -1).

%F Gauss's continued fraction: 1/(1 + 1^2/(5 + 4^2/(9 + 5^2/(13 + 8^2/(17 + 9^2/(21 + 12^2/(25 + 13^2/(29 + 16^2/(33 + 17^2/(37 + ... )))))))))). (End)

%e 0.86697298733991103757399516388287071365217536734524490433....

%e At N = 100000 the truncated series Sum_{k = 0..N/4 - 1} (-1)^k/(4*k + 1) ) = 1.7339(3)5974(5)7982(5)075(25)79(846)27(404)7... to 32 digits The bracketed numbers show where this decimal expansion differs from that of 2*A181048. The numbers 1, 1, -3, -11, 57, 361 must be added to the bracketed numbers to give the correct decimal expansion to 32 digits: 2*( (log(1 + sqrt(2)) + Pi/2)/(2*sqrt(2)) ) = 1.7339(4)5974(6)7982(2)075(14)79(903)27(765)7.... - _Peter Bala_, Sep 23 2016

%t RealDigits[(Pi Sqrt[2])/8 + (Sqrt[2] Log[1 + Sqrt[2]])/4, 10, 100][[1]] (* _Alonso del Arte_, Aug 11 2011 *)

%o (PARI) (log(1+sqrt(2))+Pi/2)/(2*sqrt(2)) \\ _G. C. Greubel_, Jul 05 2017

%o (PARI) (asinh(1)+Pi/2)/sqrt(8) \\ _Charles R Greathouse IV_, Jul 06 2017

%Y Cf. A001586, A003881, A024396, A091648, A093954, A113476, A181049, A181122, A188458, A193534, A262246.

%K nonn,cons

%O 0,1

%A _Jonathan D. B. Hodgson_, Oct 01 2010, Oct 06 2010

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 18 05:02 EDT 2024. Contains 372618 sequences. (Running on oeis4.)