The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A174980 Stern's diatomic series type ([0,1], 1). 5

%I #33 Dec 27 2023 10:58:56

%S 0,0,1,0,2,1,1,0,3,2,3,1,2,1,1,0,4,3,5,2,5,3,4,1,3,2,3,1,2,1,1,0,5,4,

%T 7,3,8,5,7,2,7,5,8,3,7,4,5,1,4,3,5,2,5,3,4,1,3,2,3,1,2,1,1,0,6,5,9,4,

%U 11,7,10,3,11,8,13,5,12,7,9,2,9,7,12,5,13,8,11,3,10,7,11,4,9,5,6,1,5,4,7,3,8

%N Stern's diatomic series type ([0,1], 1).

%C A variant of Stern's diatomic series A002487. See the link [Luschny] and the Maple function below for the classification by types which is based on a generalization of Dijkstra's fusc function.

%C a(n) is also the number of superduperbinary integer partitions of n.

%C It appears that a(n) is equal to the multiplicative inverse of A002487(n+2) mod A002487(n+1). - _Gary W. Adamson_, Dec 23 2023

%H Peter Luschny, <a href="/A174980/b174980.txt">row(n) for n = 0..12</a>

%H Edsger Dijkstra, <a href="http://www.cs.utexas.edu/users/EWD/ewd05xx/EWD578.PDF">EWD 578: More about the function 'fusc'</a>, Selected Writings on Computing, Springer, 1982, p. 232.

%H Peter Luschny, <a href="http://www.oeis.org/wiki/User:Peter_Luschny/SternsDiatomic">Rational Trees and Binary Partitions</a>.

%H Moritz A. Stern, <a href="http://www.digizeitschriften.de/resolveppn/GDZPPN002150301">Über eine zahlentheoretische Funktion</a>, J. Reine Angew. Math., 55 (1858), 193-220.

%F Recursion: a(2n + 1) = a(n) and a(2n) = a(n - 1) + a(n) + [n = 2^k] for n = 1, a(0) = 0. [n = 2^k] is 1 if n is a power of 2, 0 otherwise.

%e The sequence splits into rows of length 2^k:

%e 0,

%e 0, 1,

%e 0, 2, 1, 1,

%e 0, 3, 2, 3, 1, 2, 1, 1,

%e 0, 4, 3, 5, 2, 5, 3, 4, 1, 3, 2, 3, 1, 2, 1, 1,

%e ...

%e .

%e The first few partitions counted are:

%e [ 0], []

%e [ 1], []

%e [ 2], [[2]]

%e [ 3], []

%e [ 4], [[4], [2, 2]]

%e [ 5], [[4, 1]]

%e [ 6], [[4, 1, 1]]

%e [ 7], []

%e [ 8], [[8], [4, 4], [2, 2, 2, 2]]

%e [ 9], [[8, 1], [4, 4, 1]]

%e [10], [[8, 2], [8, 1, 1], [4, 4, 1, 1]]

%e [11], [[8, 2, 1]]

%e [12], [[8, 2, 2], [8, 2, 1, 1]]

%e [13], [[8, 2, 2, 1]]

%e [14], [[8, 2, 2, 1, 1]]

%e [15], []

%e [16], [[16], [8, 8], [4, 4, 4, 4], [2, 2, 2, 2, 2, 2, 2, 2]]

%e [17], [[16, 1], [8, 8, 1], [4, 4, 4, 4, 1]]

%e [18], [[16, 2], [8, 8, 2], [16, 1, 1], [8, 8, 1, 1], [4, 4, 4, 4, 1, 1]]

%e [19], [[16, 2, 1], [8, 8, 2, 1]]

%e [20], [[16, 4], [16, 2, 2], [8, 8, 2, 2], [16, 2, 1, 1], [8, 8, 2, 1, 1]]

%e [21], [[16, 4, 1], [16, 2, 2, 1], [8, 8, 2, 2, 1]]

%e [22], [[16, 4, 2], [16, 4, 1, 1], [16, 2, 2, 1, 1], [8, 8, 2, 2, 1, 1]]

%e [23], [[16, 4, 2, 1]]

%e [24], [[16, 4, 4], [16, 4, 2, 2], [16, 4, 2, 1, 1]]

%p SternDijkstra := proc(L, p, n) local k, i, len, M; len := nops(L); M := L; k := n; while k > 0 do M[1+(k mod len)] := add(M[i], i=1..len); k := iquo(k, len); od; op(p, M) end:

%p a := n -> SternDijkstra([0,1], 1, n);

%t a[0] = 0; a[n_?OddQ] := a[n] = a[(n-1)/2]; a[n_?EvenQ] := a[n] = a[n/2 - 1] + a[n/2] + Boole[ IntegerQ[ Log[2, n/2]]]; Table[a[n], {n, 0, 100}] (* _Jean-François Alcover_, Jul 26 2013 *)

%o (SageMath)

%o def A174980(n):

%o M = [0, 1]

%o for b in n.bits():

%o M[b] = M[0] + M[1]

%o return M[0]

%o print([A174980(n) for n in (0..100)]) # _Peter Luschny_, Nov 28 2017

%o (Python) # Generating the partitions.

%o def SDBinaryPartition(n):

%o def Double(W, T):

%o B = []

%o for L in W:

%o A = [a*2 for a in L]

%o if T > 0: A += [1]*T

%o B.append(A)

%o return B

%o if n == 2: return [[2]]

%o if n < 4: return []

%o h = n // 2

%o H = SDBinaryPartition(h)

%o B = Double(H, n % 2)

%o if n % 2 == 0:

%o H = SDBinaryPartition(h - 1)

%o if H != []: B += Double(H, 2)

%o if (n & (n - 1)) == 0: B.append([2]*h)

%o return B

%o for n in range(25): print([n], SDBinaryPartition(n)) # _Peter Luschny_, Sep 02 2019

%Y Cf. A002487, A070879, A047679, A007306, A174981, A140429 (row sums), A086449.

%K easy,nonn,tabf,look

%O 0,5

%A _Peter Luschny_, Apr 03 2010

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 7 05:57 EDT 2024. Contains 373144 sequences. (Running on oeis4.)