The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A174504 Continued fraction expansion for exp( Sum_{n>=1} 1/(n*A002203(n)) ), where A002203(n) = (1+sqrt(2))^n + (1-sqrt(2))^n. 8
1, 1, 5, 1, 13, 33, 1, 81, 197, 1, 477, 1153, 1, 2785, 6725, 1, 16237, 39201, 1, 94641, 228485, 1, 551613, 1331713, 1, 3215041, 7761797, 1, 18738637, 45239073, 1, 109216785, 263672645, 1, 636562077, 1536796801, 1, 3710155681, 8957108165, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
LINKS
FORMULA
a(3n-3) = 1, a(3n-2) = A002203(2n-1) - 1, a(3n-1) = A002203(2n) - 1, for n>=1 [conjecture].
From Colin Barker, Jan 20 2013: (Start)
a(n) = 7*a(n-3) - 7*a(n-6) + a(n-9).
G.f.: -(x^2-x+1)*(x^6-2*x^5-2*x^4-2*x^3+6*x^2+2*x+1) / ((x-1)*(x^2+x+1)*(x^6-6*x^3+1)). (End)
From Peter Bala, Jan 25 2013: (Start)
The above conjectures are correct. The real number exp( Sum {n>=1} 1/(n*A002203(n)) ) is equal to the infinite product F(x) := product {n >= 0} (1 + x^(4*n+3))/(1 - x^(4*n+1)) evaluated at x = sqrt(2) - 1. Ramanujan has given a continued fraction expansion for the product F(x). Using this we can find the simple continued fraction expansion of the numbers F(1/2*(sqrt(N^2 + 4) - N)), N a positive integer. The present case is when N = 2. See the Bala link for details.
The theory also provides the simple continued fraction expansion of the numbers F({sqrt(2) - 1}^(2*k+1)), k = 1, 2, 3, ...: if [1; c(1), c(2), 1, c(3), c(4), 1, ...] denotes the present sequence then the simple continued fraction expansion of F({sqrt(2) - 1}^(2*k+1)) is given by [1; c(2*k+1), c(2*(2*k+1)), 1, c(3*(2*k+1)), c(4*(2*k+1)), 1, ...].
(End)
EXAMPLE
Let L = Sum_{n>=1} 1/(n*A002203(n)) or, more explicitly,
L = 1/2 + 1/(2*6) + 1/(3*14) + 1/(4*34) + 1/(5*82) + 1/(6*198) +...
so that L = 0.6182475539420223547415636201969551910173293917288...
then exp(L) = 1.8556732235071087707741415885016794127474675663938...
equals the continued fraction given by this sequence:
exp(L) = [1;1,5,1,13,33,1,81,197,1,477,1153,1,2785,6725,1,...]; i.e.,
exp(L) = 1 + 1/(1 + 1/(5 + 1/(1 + 1/(13 + 1/(33 + 1/(1 +...)))))).
Compare these partial quotients to A002203(n), n=1,2,3,...:
[2,6,14,34,82,198,478,1154,2786,6726,16238,39202,94642,228486,...].
MATHEMATICA
LinearRecurrence[{0, 0, 7, 0, 0, -7, 0, 0, 1}, {1, 1, 5, 1, 13, 33, 1, 81, 197}, 40] (* Harvey P. Dale, Sep 15 2016 *)
PROG
(PARI) {a(n)=local(L=sum(m=1, 2*n+1000, 1./(m*round((1+sqrt(2))^m+(1-sqrt(2))^m)))); contfrac(exp(L))[n]}
CROSSREFS
Cf. A002203 (companion Pell numbers), A174500, A174503, A174505.
Sequence in context: A146620 A300291 A366159 * A270654 A067558 A104792
KEYWORD
cofr,nonn,easy
AUTHOR
Paul D. Hanna, Mar 21 2010
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 8 21:00 EDT 2024. Contains 373227 sequences. (Running on oeis4.)