The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A172068 Triangular array T(n,k) is the number of n-step one-dimensional walks that return to the origin exactly k times. 1
1, 2, 2, 2, 4, 4, 6, 6, 4, 12, 12, 8, 20, 20, 16, 8, 40, 40, 32, 16, 70, 70, 60, 40, 16, 140, 140, 120, 80, 32, 252, 252, 224, 168, 96, 32, 504, 504, 448, 336, 192, 64, 924, 924, 840, 672, 448, 224, 64, 1848, 1848, 1680, 1344, 896, 448, 128, 3432, 3432, 3168 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
In a ballot count of n total votes cast for two candidates, T(n,k) is the number of counts in which exactly k ties occur during the counting process (disregarding the initial tie of 0 to 0) and considering every possible outcome of votes.
REFERENCES
W. Feller, An Introduction to Probability Theory and its Applications, Vol 1, 3rd ed. New York: Wiley, pp. 67-97, 1968
LINKS
FORMULA
T(2n,k) = binomial(2n-k, n-k)*2^k; T(2n+1,k) = 2*T(2n,k). - David Callan, May 01 2013
EXAMPLE
T(5,2) = 8 because there are eight possible vote count sequences in which five votes are cast and the count becomes tied two times during the counting process: {-1, 0, -1, 0, -1}, {-1, 0, -1, 0, 1}, {-1, 0, 1, 0, -1}, {-1, 0, 1, 0, 1}, {1, 0, -1, 0, -1}, {1, 0, -1, 0, 1}, {1, 0, 1, 0, -1}, {1, 0, 1, 0, 1}
Triangle begins:
1;
2;
2, 2;
4, 4;
6, 6, 4;
12, 12, 8;
20, 20, 16, 8;
40, 40, 32, 16;
MAPLE
T:= (n, k)-> `if`(irem(n, 2, 'r')=0, binomial(n-k, r-k)*2^k, 2*T(n-1, k)):
seq(seq(T(n, k), k=0..iquo(n, 2)), n=0..20); # Alois P. Heinz, May 07 2013
MATHEMATICA
Table[Table[ Length[Select[Map[Accumulate, Strings[{-1, 1}, n]], Count[ #, 0] == k &]], {k, 0, Floor[n/2]}], {n, 0, 20}] // Grid
PROG
(PARI) T(n, k) = if(Mod(n, 2)==0, 2^k*binomial(n-k, (n/2)-k), 2^(k+1)*binomial(n-k-1, ((n-1)/2)-k) ); \\ G. C. Greubel, Dec 05 2019
(Magma)
function T(n, k)
if (n mod 2) eq 0 then return 2^k*Binomial(n-k, Floor(n/2)-k);
else return 2^(k+1)*Binomial(n-k-1, Floor((n-1)/2)-k);
end if; return T; end function;
[T(n, k): k in [0..Floor(n/2)], n in [0..20]]; // G. C. Greubel, Dec 05 2019
(Sage)
def T(n, k):
if (mod(n, 2)==0): return 2^k*binomial(n-k, (n/2)-k)
else: return 2^(k+1)*binomial(n-k-1, ((n-1)/2)-k)
[[T(n, k) for k in (0..floor(n/2))] for n in (0..20)] # G. C. Greubel, Dec 05 2019
(GAP)
T:= function(n, k)
if Mod(n, 2)=0 then return 2^k*Binomial(n-k, Int(n/2)-k);
else return 2^(k+1)*Binomial(n-k-1, Int((n-1)/2)-k);
fi; end;
Flat(List([0..20], n-> List([0..Int(n/2)], k-> T(n, k) ))); # G. C. Greubel, Dec 05 2019
CROSSREFS
The first two columns corresponding to k=0 and k=1 are A063886.
Sequence in context: A134318 A246452 A104295 * A289195 A353711 A008331
KEYWORD
nonn,tabf
AUTHOR
Geoffrey Critzer, Jan 24 2010
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 4 15:36 EDT 2024. Contains 373099 sequences. (Running on oeis4.)