The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A135922 Inverse binomial transform of A006116, which is the sum of Gaussian binomial coefficients [n,k] for q=2. 10
1, 1, 2, 6, 26, 158, 1330, 15414, 245578, 5382862, 162700898, 6801417318, 394502066810, 31849226170622, 3589334331706258, 566102993389615254, 125225331231990004138, 38920655753545108286254, 17021548688670112527781058, 10486973328106497739526535366 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
Let v_1,...,v_n be a basis of an n-dimensional vector space V over the field GF(2). Then a(n+1) is the number of subspaces of V that contain the vector v_1 but do not contain v_2,...,v_n. - Geoffrey Critzer, Jul 05 2018
Also number of Stanley graphs on n nodes. For precise definition see Knuth (1997). - Alois P. Heinz, Sep 24 2019
Also the number of naturally labeled posets on [n] with height at most two. - David Bevan, Jul 28 2022; Nov 16 2023
Also the number of sign mappings X:([n] choose 2) -> {+,-} such that for any ordered 3-tuple a<b<c we have X(ab)X(ac)X(bc) not in {+-+,+++}. - Manfred Scheucher, Jan 05 2024
REFERENCES
S. R. Finch, Mathematical Constants, Cambridge, 2003, p. 318.
LINKS
David Bevan, Gi-Sang Cheon and Sergey Kitaev, On naturally labelled posets and permutations avoiding 12-34, arXiv:2311.08023 [math.CO], 2023.
D. E. Knuth, Letter to Daniel Ullman and others, Apr 29 1997 [Annotated scanned copy, with permission]
Zvi Rosen and Yan X. Zhang, Convex Neural Codes in Dimension 1, arXiv:1702.06907 [math.CO], 2017. Mentions this sequence.
FORMULA
O.g.f.: A(x) = Sum_{n>=0} x^n / Product_{k=0..n} (1 - (2^k-1)*x).
G.f.: (G(0) - 1)/(x-1) where G(k) = 1 - 1/(1-x*(2^k-1))/(1-x/(x-1/G(k+1))); (recursively defined continued fraction). - Sergei N. Gladkovskii, Jan 16 2013
a(n) ~ c * 2^(n^2/4), where c = EllipticTheta[3,0,1/2]/QPochhammer[1/2,1/2] = 7.3719688014613... if n is even and c = EllipticTheta[2,0,1/2]/QPochhammer[1/2,1/2] = 7.3719494907662... if n is odd. - Vaclav Kotesovec, Aug 23 2013
a(n) = Sum_{k=0..n} qStirling2(n,k), where qStirling2 is the triangle A139382. - Vladimir Kruchinin, Feb 26 2020
G.f.: f(1), where f(y) = 1 + x*((y-1)*f(y) + f(2*y)). - David Bevan, Jul 28 2022
EXAMPLE
O.g.f.: A(x) = 1 + x/(1-x) + x^2/((1-x)*(1-3x)) + x^3/((1-x)*(1-3x)*(1-7x)) + x^4/((1-x)*(1-3x)*(1-7x)*(1-15x)) + ...
MAPLE
b:= proc(n) option remember; add(mul(
(2^(i+k)-1)/(2^i-1), i=1..n-k), k=0..n)
end:
a:= proc(n) option remember;
add(b(n-j)*binomial(n, j)*(-1)^j, j=0..n)
end:
seq(a(n), n=0..19); # Alois P. Heinz, Sep 24 2019
MATHEMATICA
Table[SeriesCoefficient[Sum[x^n/Product[(1-(2^k-1)*x), {k, 0, n}], {n, 0, nn}], {x, 0, nn}] , {nn, 0, 20}] (* Vaclav Kotesovec, Aug 23 2013 *)
b[n_] := b[n] = Sum[Product[(2^(i+k)-1)/(2^i-1), {i, 1, n-k}], {k, 0, n}];
a[n_] := a[n] = Sum[(-1)^j b[n-j] Binomial[n, j], {j, 0, n}];
a /@ Range[0, 19] (* Jean-François Alcover, Mar 10 2020, after Alois P. Heinz *)
PROG
(PARI) a(n)=polcoeff(sum(k=0, n, x^k/prod(j=0, k, 1-(2^j-1)*x+x*O(x^n))), n)
(Sage) # After Vladimir Kruchinin.
def a(n):
@cached_function
def T(n, k):
if k == 1 or k == n: return 1
return (2^k-1)*T(n-1, k) + T(n-1, k-1)
return sum(T(n, k) for k in (1..n)) if n > 0 else 1
print([a(n) for n in (0..19)]) # Peter Luschny, Feb 26 2020
CROSSREFS
Sequence in context: A099758 A099760 A112934 * A213430 A103367 A047863
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 06 2007
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 10 19:30 EDT 2024. Contains 373280 sequences. (Running on oeis4.)