The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A132276 Triangle read by rows: T(n,k) is the number of paths in the first quadrant from (0,0) to (n,k), consisting of steps U=(1,1), D=(1,-1), h=(1,0) and H=(2,0) (0<=k<=n). 6
1, 1, 1, 3, 2, 1, 6, 7, 3, 1, 16, 18, 12, 4, 1, 40, 53, 37, 18, 5, 1, 109, 148, 120, 64, 25, 6, 1, 297, 430, 369, 227, 100, 33, 7, 1, 836, 1244, 1146, 760, 385, 146, 42, 8, 1, 2377, 3656, 3519, 2518, 1391, 606, 203, 52, 9, 1, 6869, 10796, 10839, 8188, 4900, 2346, 903, 272 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,4
COMMENTS
Mirror image of A059397. - Emeric Deutsch, Aug 18 2007
Row sums yield A059398.
Riordan matrix (g(x),x*g(x)), where g(x) = (1-x-x^2-sqrt(1-2*x-5*x^2+2*x^3+x^4))/(2*x^2). - Emanuele Munarini, May 05 2011
REFERENCES
Lin Yang and S.-L. Yang, The parametric Pascal rhombus. Fib. Q., 57:4 (2019), 337-346.
LINKS
Paul Barry, On Motzkin-Schröder Paths, Riordan Arrays, and Somos-4 Sequences, J. Int. Seq. (2023) Vol. 26, Art. 23.4.7.
W. F. Klostermeyer, M. E. Mays, L. Soltes and G. Trapp, A Pascal rhombus, Fibonacci Quarterly, 35 (1997), 318-328.
Sheng-Liang Yang and Yuan-Yuan Gao, The Pascal rhombus and Riordan arrays, Fib. Q., 56:4 (2018), 337-347. See Fig. 1.
FORMULA
T(n,0) = A128720(n).
G.f.: G(t,z) = g/(1-t*z*g), where g = 1 +z*g +z^2*g +z^2*g^2 or g = c(z^2/(1-z-z^2)^2)/(1-z-z^2), where c = ((1-sqrt(1-4*z))/(2*z) is the Catalan function.
T(n,k) = T(n-1,k-1) + T(n-1,k) + T(n-1,k+1) + T(n-2,k). - Emeric Deutsch, Aug 18 2007
Column k has g.f. z^k*g^(k+1), where g = 1 +z*g +z^2*g +z^2*g^2 = (1 -z-z^2 -sqrt((1+z-z^2)*(1-3*z-z^2)))/(2*z^2).
T(n,k) = Sum_{i=0..(n-k)/2} (binomial(2*i+k,i)*(k+1)/(i+k+1)* Sum_{j=0..(n-k-2*i)} binomial(i+j+k,i+k)*binomial(j,n-k-2*i-j). - Emanuele Munarini, May 05 2011
EXAMPLE
T(3,2) = 3 because we have UUh, UhU and hUU.
Triangle begins:
1;
1, 1;
3, 2, 1;
6, 7, 3, 1;
16, 18, 12, 4, 1;
40, 53, 37, 18, 5, 1;
109, 148, 120, 64, 25, 6, 1;
...
MAPLE
g:=((1-z-z^2-sqrt((1+z-z^2)*(1-3*z-z^2)))*1/2)/z^2: G:=simplify(g/(1-t*z*g)): Gser:=simplify(series(G, z=0, 13)): for n from 0 to 10 do P[n]:=sort(coeff(Gser, z, n)) end do: for n from 0 to 10 do seq(coeff(P[n], t, j), j = 0 .. n) end do; # yields sequence in triangular form
MATHEMATICA
Flatten[Table[Sum[Binomial[2i+k, i(k+1)/(i+k+1)*Sum[Binomial[i+j+k, i+k]* Binomial[j, n-k-2i-j], {j, 0, n-k-2i}], {i, 0, (n-k)/2}], {n, 0, 15}, {k, 0, n}]] (* Emanuele Munarini, May 05 2011 *)
c[x_] := (1 - Sqrt[1 - 4*x])/(2*x); g[z_] := c[z^2/(1 - z - z^2)^2]/(1 - z - z^2); G[t_, z_] := g[z]/(1 - t*z*g[z]); CoefficientList[ CoefficientList[Series[G[t, x], {x, 0, 49}, {t, 0, 49}], x], t]//Flatten (* G. C. Greubel, Dec 02 2017 *)
PROG
(Maxima) create_list(sum(binomial(2*i+k, i) * (k+1)/(i+k+1) * sum(binomial(i+j+k, i+k) * binomial(j, n-k-2*i-j), j, 0, n-k-2*i), i, 0, (n-k)/2), n, 0, 15, k, 0, n); /* Emanuele Munarini, May 05 2011 */
(PARI) for(n=0, 10, for(k=0, n, print1(sum(i=0, (n-k)/2, (binomial(2*i+k, i) *(k+1)/(i+k+1)*sum(j=0, (n-k-2*i), binomial(i+j+k, i+k)*binomial(j, n-k-2*i-j)))), ", "))) \\ G. C. Greubel, Nov 29 2017
CROSSREFS
Cf. A059397, A128720 (the leading diagonal).
Cf. A059398.
Sequence in context: A267121 A208518 A139624 * A257558 A370470 A202390
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, Aug 16 2007, Sep 03 2007
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 9 13:21 EDT 2024. Contains 373240 sequences. (Running on oeis4.)