The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A130549 Numerators of partial sums for a series for 2*Zeta(2)/3 = (Pi^2)/9. 6
1, 13, 197, 1105, 9211, 130277, 82987349, 331950131, 16929464521, 29241805241, 3538258509761, 6259995854281, 1057939300471201, 1057939300716589, 51133732870640471, 372975463296151087, 107789908892879155343 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
Denominators are given in A130550.
The r(n) = 2*Sum_{j = 1..n} 1/(j^2*binomial(2*j,j) tend, for n -> infinity, to 2*Zeta(2)/3 = (Pi^2)/9, which is approximately 1.096622711.
A related result is zeta(2) = 3*Sum_{j = 1..n} 1/(j^2*binomial(2*j,j)) + n!^4/(2*n)!*Sum_{j >= 1} 1/( Product_{i = 0..n} (j + i)^2 ) valid for n >= 0. See Wilf, equation 5, p. 191. - Peter Bala, Oct 30 2023
REFERENCES
L. Berggren, T. Borwein and P. Borwein, Pi: A Source Book, Springer, New York, 1997, p. 687.
A. van der Poorten, A proof that Euler missed..., reprinted in Pi: A Source Book, pp. 439-447, eq. 2', with a hint for the proof in footnote 4.
LINKS
Wolfdieter Lang, Rationals and limit.
A. J. van der Poorten, A proof that Euler missed ... Apery's proof of the irrationality of zeta(3), Math. Intelligencer 1 (1978/1979), 195-203.
Herbert S. Wilf, Accelerated series for universal constants, by the WZ method, Discrete Mathematics & Theoretical Computer Science, Vol 3, No 4 (1999).
FORMULA
a(n) = numerator(r(n)), n>=1, with the rationals r(n) defined above.
Numerator of 2*Sum_{i=1..n} 1/(i^2*C(2*i,i)). - Wolfdieter Lang, Oct 07 2008; edited by Michel Marcus, Mar 10 2016
a(n) = A112093(n) for n >= 2. - Georg Fischer, Nov 03 2018
From Peter Bala, Feb 17 2024: (Start)
The sequences {(2*n)! : n >= 1} and {(2*n)!*r(n) : n >= 1} satisfy the same second-order recurrence u(n) = (5*n^2 - 4*n + 1)*u(n-1) - 2*(n - 1)^3*(2*n - 3)*u(n-2) leading to the continued fraction representations r(n) = 1/(1 - 1/(13 - 48/(34 - 270/(65 - ... - 2*(2*n - 3)*(n - 1)^3/(5*n^2 - 4*n + 1 ))))) and Pi^2/9 = 1/(1 - 1/(13 - 48/(34 - 270/(65 - ... - 2*(2*n - 3)*(n - 1)^3/((5*n^2 - 4*n + 1) - ... ))))). (End)
EXAMPLE
Rationals r(n): [1, 13/12, 197/180, 1105/1008, 9211/8400, 130277/118800, ...].
r(3) = 1/(1 - 1/(13 - 48/(34))) = 197/180. - Peter Bala, Feb 17 2024
MAPLE
seq(numer(add(2/(k^2*binomial(2*k, k)), k = 1 .. n)), n = 1 .. 17); # Peter Bala, Mar 03 2015
MATHEMATICA
Table[2*Sum[1/(i^2*Binomial[2*i, i]), {i, 1, n}], {n, 1, 20}] // Numerator
Accumulate[Table[1/(n^2 Binomial[2n, n]), {n, 20}]]//Numerator (* Harvey P. Dale, Jan 27 2019 *)
PROG
(PARI) a(n) = numerator(2*sum(i=1, n, 1/(i^2*binomial(2*i, i)))); \\ Michel Marcus, Mar 10 2016
CROSSREFS
Sequence in context: A081796 A140536 A289734 * A361171 A157690 A354437
KEYWORD
nonn,frac,easy
AUTHOR
Wolfdieter Lang, Jul 13 2007
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 16 00:16 EDT 2024. Contains 372549 sequences. (Running on oeis4.)