The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A127208 Union of all n-step Lucas sequences, that is, all sequences s(1-n) = s(2-n) = ... = s(-1) = -1, s(0) = n and for k > 0, s(k) = s(k-1) + ... + s(k-n). 3
1, 3, 4, 7, 11, 15, 18, 21, 26, 29, 31, 39, 47, 51, 57, 63, 71, 76, 99, 113, 120, 123, 127, 131, 191, 199, 223, 239, 241, 247, 255, 322, 367, 439, 443, 475, 493, 502, 511, 521, 708, 815, 843, 863, 943, 983, 1003, 1013, 1023, 1364, 1365, 1499, 1695, 1871, 1959 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
Noe and Post conjectured that the only positive terms that are common to any two distinct n-step Lucas sequences are the Mersenne numbers (A001348) that begin each sequence and 7 and 11 (in 2- and 3-step) and 5071 (in 3- and 4-step). The intersection of this sequence with the union of all the n-step Fibonacci sequences (A124168) appears to consist of 4, 21, 29, the Mersenne numbers 2^n-1 for all n and the infinite set of Eulerian numbers in A127232.
LINKS
Tony D. Noe and Jonathan Vos Post, Primes in Fibonacci n-step and Lucas n-step Sequences, J. of Integer Sequences, Vol. 8 (2005), Article 05.4.4
FORMULA
MATHEMATICA
LucasSequence[n_, kMax_] := Module[{a, s, lst={}}, a=Join[Table[ -1, {n-1}], {n}]; While[s=Plus@@a; a=RotateLeft[a]; a[[n]]=s; s<=kMax, AppendTo[lst, s]]; lst]; nn=10; t={}; Do[t=Union[t, LucasSequence[n, 2^(nn+1)]], {n, 2, nn}]; t
CROSSREFS
Cf. A227885.
Sequence in context: A023563 A050120 A039010 * A027022 A120365 A166375
KEYWORD
nonn
AUTHOR
T. D. Noe, Jan 09 2007
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 7 14:59 EDT 2024. Contains 373202 sequences. (Running on oeis4.)