The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A116071 Triangle T, read by rows, equal to Pascal's triangle to the matrix power of Pascal's triangle, so that T = C^C, where C(n,k) = binomial(n,k) and T(n,k) = A000248(n-k)*C(n,k). 4
1, 1, 1, 3, 2, 1, 10, 9, 3, 1, 41, 40, 18, 4, 1, 196, 205, 100, 30, 5, 1, 1057, 1176, 615, 200, 45, 6, 1, 6322, 7399, 4116, 1435, 350, 63, 7, 1, 41393, 50576, 29596, 10976, 2870, 560, 84, 8, 1, 293608, 372537, 227592, 88788, 24696, 5166, 840, 108, 9, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,4
COMMENTS
Column 0 = A000248 (Number of forests with n nodes and height at most 1).
Column 1 = A052512 (Number of labeled trees of height 2).
Row sums = A080108 (Sum_{k=1..n} k^(n-k) * C(n-1,k-1)).
Central terms = A116072(n) = (n+1) * A000108(n) * A000248(n).
From Peter Bala, Sep 13 2012: (Start)
For commuting lower unitriangular matrix A and lower triangular matrix B we define A raised to the matrix power B, denoted by A^B, to be the lower unitriangular matrix Exp(B*Log(A)). Here Exp denotes the matrix exponential defined by the power series
Exp(A) = 1 + A + A^2/2! + A^3/3! + ...
and the matrix logarithm Log(A) is defined by the series
Log(A) = (A-1) - 1/2*(A-1)^2/2 + 1/3*(A-1)^3 - ....
Let A = [f(x),x] and B = [g(x),x] be exponential Riordan arrays in the Appell subgroup and suppose f(0) = 1. Then A and B commute and A^B is the exponential Riordan array [exp(g(x)*log(f(x))),x], also belonging to the Appell group. In the present case we are taking A = B = [exp(x),x], equal to the Pascal triangle A007318.
For any lower unitriangular matrix A (with, say, rational entries) the infinite tower of powers A^(A^(A^...))) is well-defined (and also has rational entries). An example is given in the Formula section.
(End)
LINKS
FORMULA
E.g.f.: exp( x*exp(x) + x*y ).
From Peter Bala, Sep 13 2012: (Start)
Exponential Riordan array [exp(x*exp(x)),x] belonging to the Appell group. Thus the e.g.f. for the k-th column of the triangle is x^k/k!*exp(x*exp(x)).
The inverse array, denote it by X, is a signed version of A215652. The infinite tower of matrix powers X^(X^(X^(...))) equals the inverse of Pascal's triangle.
(End)
O.g.f.: Sum_{n>=0} x^n / (1 - x*(n+y))^(n+1). - Paul D. Hanna, Aug 03 2014
G.f. for row n: Sum_{k=0..n} binomial(n,k) * (k + y)^(n-k) for n>=0. - Paul D. Hanna, Aug 03 2014
T(n,k) = Sum_{j=0..n-k} C(n,j) * C(n-j,k) * j^(n-k-j) = A000248(n-k)*C(n,k). - Paul D. Hanna, Aug 03 2014
Infinitesimal generator is A216973. - Peter Bala, Feb 13 2017
EXAMPLE
E.g.f.: E(x,y) = 1 + (1 + y)*x + (3 + 2*y + y^2)*x^2/2!
+ (10 + 9*y + 3*y^2 + y^3)*x^3/3!
+ (41 + 40*y + 18*y^2 + 4*y^3 + y^4)*x^4/4!
+ (196 + 205*y + 100*y^2 + 30*y^3 + 5*y^4 + y^5)*x^5/5! +...
where E(x,y) = exp(x*y) * exp(x*exp(x)).
O.g.f.: A(x,y) = 1 + (1 + y)*x + (3 + 2*y + y^2)*x^2
+ (10 + 9*y + 3*y^2 + y^3)*x^3
+ (41 + 40*y + 18*y^2 + 4*y^3 + y^4)*x^4
+ (196 + 205*y + 100*y^2 + 30*y^3 + 5*y^4 + y^5)*x^5 +...
where
A(x,y) = 1/(1-x*y) + x/(1-x*(y+1))^2 + x^2/(1-x*(y+2))^3 + x^3/(1-x*(y+3))^4 + x^4/(1-x*(y+4))^5 + x^5/(1-x*(y+5))^6 + x^6/(1-x*(y+6))^7 + x^7/(1-x*(y+7))^8 +...
Triangle begins:
1;
1, 1;
3, 2, 1;
10, 9, 3, 1;
41, 40, 18, 4, 1;
196, 205, 100, 30, 5, 1;
1057, 1176, 615, 200, 45, 6, 1;
6322, 7399, 4116, 1435, 350, 63, 7, 1;
41393, 50576, 29596, 10976, 2870, 560, 84, 8, 1;
293608, 372537, 227592, 88788, 24696, 5166, 840, 108, 9, 1;
2237921, 2936080, 1862685, 758640, 221970, 49392, 8610, 1200, 135, 10, 1; ...
MATHEMATICA
(* The function RiordanArray is defined in A256893. *)
RiordanArray[Exp[# Exp[#]]&, #&, 10, True] // Flatten (* Jean-François Alcover, Jul 19 2019 *)
PROG
(PARI) /* By definition C^C: */
{T(n, k)=local(A, C=matrix(n+1, n+1, r, c, binomial(r-1, c-1)), L=matrix(n+1, n+1, r, c, if(r==c+1, c))); A=sum(m=0, n, L^m*C^m/m!); A[n+1, k+1]}
for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print(""))
(PARI) /* From e.g.f.: */
{T(n, k)=local(A=1); A=exp( x*y + x*exp(x +x*O(x^n)) ); n!*polcoeff(polcoeff(A, n, x), k, y)}
for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print(""))
(PARI) /* From o.g.f. (Paul D. Hanna, Aug 03 2014): */
{T(n, k)=local(A=1); A=sum(k=0, n, x^k/(1 - x*(k+y) +x*O(x^n))^(k+1)); polcoeff(polcoeff(A, n, x), k, y)}
for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print(""))
(PARI) /* From row polynomials (Paul D. Hanna, Aug 03 2014): */
{T(n, k)=local(R); R=sum(k=0, n, (k+y)^(n-k)*binomial(n, k)); polcoeff(R, k, y)}
for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print(""))
(PARI) /* From formula for T(n, k) (Paul D. Hanna, Aug 03 2014): */
{T(n, k) = sum(j=0, n-k, binomial(n, j) * binomial(n-j, k) * j^(n-k-j))}
for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print(""))
CROSSREFS
Sequence in context: A267629 A101894 A187105 * A214622 A327801 A320578
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Feb 03 2006
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 29 00:29 EDT 2024. Contains 372921 sequences. (Running on oeis4.)