The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A109187 Triangle read by rows: T(n,k) is number of Grand Motzkin paths of length n having k (1,0)-steps. 8
1, 0, 1, 2, 0, 1, 0, 6, 0, 1, 6, 0, 12, 0, 1, 0, 30, 0, 20, 0, 1, 20, 0, 90, 0, 30, 0, 1, 0, 140, 0, 210, 0, 42, 0, 1, 70, 0, 560, 0, 420, 0, 56, 0, 1, 0, 630, 0, 1680, 0, 756, 0, 72, 0, 1, 252, 0, 3150, 0, 4200, 0, 1260, 0, 90, 0, 1, 0, 2772, 0, 11550, 0, 9240, 0, 1980, 0, 110, 0, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,4
COMMENTS
A Grand Motzkin path is a path in the half-plane x >= 0, starting at (0,0), ending at (n,0) and consisting of steps u=(1,1), d=(1,-1) and h=(1,0).
From Peter Bala, Feb 11 2017: (Start)
Consider an infinite 1-dimensional integer lattice with an oriented self-loop at each vertex. Then T(n,k) equals the number of walks of length n from a vertex to itself having k loops. There is a bijection between such walks and Grand Motzkin paths which takes a right step and a left step on the lattice to an up step U and a down step D of a Grand Motzkin path respectively, and takes traversing a loop on the lattice to the horizontal step H. See A282252 for the corresponding triangle of walks on a 2-dimensional lattice with self-loops. (End)
LINKS
Gheorghe Coserea, Rows n = 0..100, flattened
FORMULA
G.f.: 1/sqrt((1-tz)^2-4z^2).
Row sums yield the central trinomial coefficients (A002426).
T(2n+1, 0) = 0.
T(2n, 0) = binomial(2n,n) (A000984).
Sum_{k=0..n} k*T(n,k) = A109188(n).
Except for the order, same rows as those of A105868.
Column k has e.g.f. (x^k/k!)*Bessel_I(0,2x). - Paul Barry, Mar 11 2006
T(n,k) = binomial((n+k)/2,k)*binomial(n,(n+k)/2)*(1+(-1)^(n-k))/2. - Paul Barry, Sep 18 2007
Coefficient array of the polynomials P(n,x) = x^n*hypergeom([1/2-n/2,-n/2], [1], 4/x^2). - Paul Barry, Oct 04 2008
G.f.: 1/(1-xy-2x^2/(1-xy-x^2/(1-xy-x^2/(1-xy-x^2/(1-.... (continued fraction). - Paul Barry, Jan 28 2009
From Paul Barry, Apr 21 2010: (Start)
Exponential Riordan array [Bessel_I(0,2x), x].
Coefficient array of the polynomials P(n,x) = Sum_{k=0..floor(n/2)} C(n,2k)*C(2k, k)*x^(n - 2k).
Diagonal sums are the aerated central Delannoy numbers (A001850 with interpolated zeros). (End)
From Peter Bala, Feb 11 2017: (Start)
T(n,k) = binomial(n,k)*binomial(n-k,floor((n-k)/2))*(1 + (-1)^(n-k))/2.
T(n,k) = (n/k) * T(n-1,k-1).
T(n,k) = the coefficient of H^k in the expansion of (H + U + 1/U)^n.
n-th row polynomial R(n,t) = Sum_{k = 0..floor(n/2)} binomial(n,2*k) * binomial(2*k,k) * t^(n-2*k) = coefficient of x^n in the expansion of (1 + t*x + x^2)^n.
R(n,t) = Sum_{k = 0..n} binomial(n,k)*binomial(2*k,k)*(t - 2)^(n-k).
d/dt(R(n,t)) = n*R(n-1,t).
R(n,t) = (1/Pi) * Integral_{x = 0..Pi} (t + 2*cos(x))^n dx.
Moment representation on a finite interval: R(n,t) = 1/Pi * Integral_{x = t-2 .. t+2} x^n/sqrt((t + 2 - x)*(x - t + 2)) dx.
Recurrence: n*R(n,t) = t*(2*n - 1)*R(n-1,t) - (t^2 - 4)*(n - 1)*R(n-2,t) with R(0,t) = 1 and R(1,t) = t.
R(n,t) = A002426 (t = 1), A000984 (t = 2), A026375 (t = 3), A081671 (t = 4), A098409 (t = 5), A098410 (t = 6) and A104454(t = 7).
The zeros of the row polynomials appear to lie on the imaginary axis in the complex plane. Also, the zeros of R(n,t) and R(n+1,t) appear to interlace on the imaginary axis.
The polynomials R(n,1 + t) are the row polynomials of A171128. (End)
From Peter Luschny, Jan 23 2018: (Start)
These are the coefficients of the polynomials G(n, -n , -x/2) where G(n, a, x) denotes the n-th Gegenbauer polynomial.
These polynomials can also be expressed as C(n, x) = binomial(2*n,n)*hypergeom([-n, -n], [-n+1/2], 1/2-x/4). (End)
EXAMPLE
T(3,1)=6 because we have hud,hdu,udh,duh,uhd,dhu, where u=(1,1),d=(1,-1), h=(1,0).
Triangle begins:
n\k [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]
[0] 1;
[1] 0, 1;
[2] 2, 0, 1;
[3] 0, 6, 0, 1;
[4] 6, 0, 12, 0, 1;
[5] 0, 30, 0, 20, 0, 1;
[6] 20, 0, 90, 0, 30, 0, 1;
[7] 0, 140, 0, 210, 0, 42, 0, 1;
[8] 70, 0, 560, 0, 420, 0, 56, 0, 1;
[9] 0, 630, 0, 1680, 0, 756, 0, 72, 0, 1;
[10] 252, 0, 3150, 0, 4200, 0, 1260, 0, 90, 0, 1;
[11] ...
From Peter Bala, Feb 11 2017: (Start)
The infinitesimal generator begins
0
0 0
2 0 0
0 6 0 0
-6 0 12 0 0
0 -30 0 20 0 0
80 0 -90 0 30 0 0
0 560 0 -210 0 42 0 0
-2310 0 2240 0 -420 0 56 0 0
....
and equals the generalized exponential Riordan array [log(Bessel_I(0,2x)),x], and so has integer entries. (End)
MAPLE
G:=1/sqrt((1-t*z)^2-4*z^2):Gser:=simplify(series(G, z=0, 15)): P[0]:=1: for n from 1 to 13 do P[n]:=coeff(Gser, z^n) od: for n from 0 to 13 do seq(coeff(t*P[n], t^k), k=1..n+1) od;
with(PolynomialTools): CL := p -> CoefficientList(simplify(p), x):
C := (n, x) -> binomial(2*n, n)*hypergeom([-n, -n], [-n+1/2], 1/2-x/4):
seq(print(CL(C(n, x))), n=0..11); # Peter Luschny, Jan 23 2018
MATHEMATICA
p[0] := 1; p[n_] := GegenbauerC[n, -n , -x/2];
Flatten[Table[CoefficientList[p[n], x], {n, 0, 11}]] (* Peter Luschny, Jan 23 2018 *)
PROG
(PARI)
T(n, k) = if ((n-k)%2, 0, binomial(n, k)*binomial(n-k, (n-k)/2));
concat(vector(12, n, vector(n, k, T(n-1, k-1)))) \\ Gheorghe Coserea, Sep 06 2018
CROSSREFS
Diagonal of rational function R(x, y, t) = 1/(1 - (x^2 + t*x*y + y^2)) with respect to x,y, i.e., T(n,k) = [(xy)^n*t^k] R(x,y,t). For t=0..7 we have the diagonals: A126869(t=0, column 0), A002426(t=1, row sums), A000984(t=2), A026375(t=3), A081671(t=4), A098409(t=5), A098410(t=6), A104454(t=7).
Sequence in context: A137526 A137525 A166335 * A265089 A166357 A067147
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, Jun 21 2005
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 15 22:47 EDT 2024. Contains 372549 sequences. (Running on oeis4.)