The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A107716 Inverse INVERT transform of triple factorial numbers (3*n-2)!!! (A007559). 7

%I #29 May 01 2019 07:52:28

%S 1,3,21,219,2973,49323,964173,21680571,551173053,15633866379,

%T 489583062381,16780438408539,624935780160285,25131869565110571,

%U 1085528359404039117,50124679063548821499,2464153823558024331645,128500643820213560377803,7085182933810282490250285

%N Inverse INVERT transform of triple factorial numbers (3*n-2)!!! (A007559).

%C Column 0 of triangle A107717.

%H Alois P. Heinz, <a href="/A107716/b107716.txt">Table of n, a(n) for n = 0..380</a>

%F G.f.: A(x) = 1 - 1/[1 + Sum_{n>=1} (3*n-2)!!! * x^n ] where (3*n-2)!!! = Product_{k=0..n-1} (3*k+1).

%F a(n) = Sum_{k, 0<=k<=n} A089949(n, k)*3^k . - _Philippe Deléham_, Aug 15 2005

%F G.f.: (1 - Q(0))/x where Q(k) = 1 - x*(3*k+1)/(1 - x*(3*k+3)/Q(k+1) ); (continued fraction). - _Sergei N. Gladkovskii_, Mar 20 2013

%F G.f.: 1/x - 2 - 2/x/G(0), where G(k)= 1 + 1/(1 - x*(3*k+3)/(x*(3*k+4) + 1/G(k+1))); (continued fraction). - _Sergei N. Gladkovskii_, May 25 2013

%F From _Peter Bala_, May 23 2017: (Start)

%F G.f. A(x) = 1/(1 + x - 4*x/(1 + 4*x - 7*x/(1 + 7*x - 10*x/(1 + 10*x - ...)))).

%F A(x) = 1/(1 + x - 4*x/(1 - 3*x/(1 - 7*x/(1 - 6*x/(1 - 10*x/(1 - 9*x - ...)))))). (End)

%e The triple factorials begin: {1,4,28,280,3640,58240,...}; thus the inverse INVERT transform of the triple factorials can be calculated by the g.f.s:

%e 1/(1 + x + 4*x^2 + 28*x^3 + 280*x^4 + 3640*x^5 + 58240*x^6 +...) = (1 - x - 3*x^2 - 21*x^3 - 219*x^4 - 2973*x^5 - 49323*x^6 -...).

%p b:= proc(n) b(n):= `if`(n=0, 1, b(n-1)*(3*n+1)) end:

%p a:= proc(n) a(n):= -`if`(n<0, 1, add(a(n-i-1)*b(i), i=0..n)) end:

%p seq(a(n), n=0..20); # _Alois P. Heinz_, May 23 2017

%t m = 20; f3[n_] := Product[3k+1, {k, 0, n-1}]; A[x_] = 1-1/(1+Sum[f3[n] x^n, {n, 1, m}]); CoefficientList[A[x] + O[x]^m, x] // Rest (* _Jean-François Alcover_, May 01 2019 *)

%o (PARI) a(n)=polcoeff(1-(1+sum(k=1,n+1,prod(j=0,k-1,3*j+1)*x^k)+x^2*O(x^n))^-1,n+1)

%Y Cf. A007559, A000698, A107717.

%K nonn,easy

%O 0,2

%A _Paul D. Hanna_, May 23 2005

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 21 11:59 EDT 2024. Contains 372736 sequences. (Running on oeis4.)