The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A105793 Expansion of (1 + y)^(1 + x). 3

%I #27 Oct 08 2017 23:46:42

%S 1,1,1,0,1,1,0,-1,0,1,0,2,-1,-2,1,0,-6,5,5,-5,1,0,24,-26,-15,25,-9,1,

%T 0,-120,154,49,-140,70,-14,1,0,720,-1044,-140,889,-560,154,-20,1,0,

%U -5040,8028,-64,-6363,4809,-1638,294,-27,1,0,40320,-69264,8540,50840,-44835,17913,-3990,510,-35,1

%N Expansion of (1 + y)^(1 + x).

%C Generalized Stirling number triangle of first kind. Row sums are (1,2,2,0,0,0,...) = 2C(2,n) - 2C(1,n) + C(0,n). Inverse is A105794.

%C Triangle T(n,k), 0 <= k <= n, read by rows, given by [1, -1, 0, -2, -1, -3, -2, -4, -3, -5, -4, -6, ...] DELTA [1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, ...] where DELTA is the operator defined in A084938. - _Philippe Deléham_, Aug 23 2006

%F E.g.f.: (1+y)^(1+x); rows have g.f. k!binomial(x+1, k); Columns have g.f. (1+x)log(1+x)^k.

%F If we define f(n,i,a) = Sum_{k=0..n-i} binomial(n,k)*Stirling1(n-k,i)*Product_{j=0..k-1} (-a-j), then T(n,i) = f(n,i,-1), for n=1,2,...; i=0...n. - _Milan Janjic_, Dec 21 2008

%F So T(n,k) = Stirling1(n,k) + n*Stirling1(n-1,k), Stirling1 being the (signed) Stirling numbers of first kind A048994. In terms of lower triangular matrices, 0<= k <= n, T is also the product [Stirling1] * [Pascal] = [A048994] * [A007318], i.e., T(n,k) = Sum_{j=0..n} Stirling1(n,j) * binomial(j,k). - _Giuliano Cabrele_, Jan 19 2009

%F This is the triangle of connection constants for expressing the basis of falling factorial polynomials x_(k) := x*(x-1)*...*(x-k+1) in terms of the polynomial sequence (x-1)^n, that is, x_(n) = Sum_{k = 0..n} T(n,k)*(x-1)^k. - _Peter Bala_, Jul 10 2013

%F From _Wolfdieter Lang_, Jun 19 2017: (Start)

%F Triangle T is the (infinite) matrix product of A048994 (Stirling1) and A007318 (Pascal): T(n,k) = Sum_{m=k..n} Stirling1(n, m)*Pascal(m, k), n >= k >= 0, and 0 for n < k. Note that the Pascal matrix is Sheffer (e^t, t) of the Appell type.

%F T is the Sheffer (aka exponential Riordan) matrix (1+t, log(1+t)).

%F E.g.f. column k: (1+x)*(log(1+x))^k/k!, k >= 0.

%F The a-sequence for T is A027641/A027642 (Bernoulli), and the z-sequence is A033999 (repeat(1,-1) (see a W. Lang link under A006232 for a- and z-sequences for Sheffer matrices, also for references).

%F Therefore the combined recurrence is: T(n, 0) = n*Sum_{j=0..n-1} (-1)^j*T(n-1, j), n >= 1, T(0, 0) = 1, and T(n, m) = (n/m)*Sum_{j=0..n-m} binomial(m-1+j, m-1)*Bernoulli(j)*T(n-1, m-1+j), n >= m >= 1. (End)

%e From _Wolfdieter Lang_, Jun 19 2017: (Start)

%e The Triangle T(n, k) starts

%e n\k 0 1 2 3 4 5 6 7 8 9 10 ...

%e 0: 1

%e 1: 1 1

%e 2: 0 1 1

%e 3: 0 -1 0 1

%e 4: 0 2 -1 -2 1

%e 5: 0 -6 5 5 -5 1

%e 6: 0 24 -26 -15 25 -9 1

%e 7: 0 -120 154 49 -140 70 -14 1

%e 8: 0 720 -1044 -140 889 -560 154 -20 1

%e 9: 0 -5040 8028 -64 -6363 4809 -1638 294 -27 1

%e 10: 0 40320 -69264 8540 50840 -44835 17913 -3990 510 -35 1

%e ... reformatted

%e Recurrence from a- and z-sequence (see above): T(1, 0) = T(0, 0) = 1; T(1, 1) = (1/1)*(1*T(0, 0) = 1, T(2, 0) = 2*(T(1, 0) - T(1, 1)) = 0, T(2, 1) = (2/1)*(T(1,0) + (-1/2)*T(1, 1)) = 1. T(3, 1) = (3/1)*(0 + (-1/2)*T(2, 1) + (1/6)*T(2, 2)) = -1. (End)

%t t[0, 0] = 1; t[n_, k_] := StirlingS1[n, k] + n*StirlingS1[n-1, k]; Table[t[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Dec 04 2013, after _Giuliano Cabrele_ *)

%Y Cf. A007318, A027641/A027642, A033999, A048994, A094645, A269953.

%K easy,sign,tabl

%O 0,12

%A _Paul Barry_, Apr 20 2005

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 5 01:34 EDT 2024. Contains 373102 sequences. (Running on oeis4.)