The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A096268 Period-doubling sequence (or period-doubling word): fixed point of the morphism 0 -> 01, 1 -> 00. 39

%I #171 Feb 08 2024 07:13:47

%S 0,1,0,0,0,1,0,1,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,1,0,1,0,0,0,1,0,1,0,1,

%T 0,0,0,1,0,1,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,1,0,1,0,0,0,1,0,0,0,1,0,0,

%U 0,1,0,1,0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,1,0,1,0,0,0,1,0,1,0,1,0,0,0,1,0,1,0

%N Period-doubling sequence (or period-doubling word): fixed point of the morphism 0 -> 01, 1 -> 00.

%C Take highest power of 2 dividing n (A007814(n+1)), read modulo 2.

%C For the scale-invariance properties see Hendriks et al., 2012.

%C This is the sequence that results from the ternary Thue-Morse sequence (A036577) if all twos in that sequence are replaced by zeros. - _Nathan Fox_, Mar 12 2013

%C This sequence can be used to draw the Von Koch snowflake with a suitable walk in the plane. Start from the origin then the n-th step is "turn +Pi/3 if a(n)=0 and turn -2*Pi/3 if a(n)=1" (see link for a plot of the first 200000 steps). - _Benoit Cloitre_, Nov 10 2013

%C 1 iff the number of trailing zeros in the binary representation of n+1 is odd. - _Ralf Stephan_, Nov 11 2013

%C Equivalently, with offset 1, the characteristic function of A036554 and an indicator for the A003159/A036554 classification of positive integers. - _Peter Munn_, Jun 02 2020

%D Michel Rigo, Formal Languages, Automata and Numeration Systems, 2 vols., Wiley, 2014. Mentions this sequence - see "List of Sequences" in Vol. 2.

%H N. J. A. Sloane, <a href="/A096268/b096268.txt">Table of n, a(n) for n = 0..10000</a> (first 1022 terms from T. D. Noe)

%H J.-P. Allouche, M. Baake, J. Cassaigns, and D. Damanik, <a href="http://arxiv.org/abs/math/0106121">Palindrome complexity</a>, arXiv:math/0106121 [math.CO], 2001; <a href="http://dx.doi.org/10.1016/S0304-3975(01)00212-2">Theoretical Computer Science</a>, 292 (2003), 9-31.

%H Scott Balchin and Dan Rust, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL20/Rust/rust3.html">Computations for Symbolic Substitutions</a>, Journal of Integer Sequences, Vol. 20 (2017), Article 17.4.1.

%H Benoit Cloitre, <a href="/A096268/a096268.png">200000 steps in the plane using "turn +Pi/3 if a(n)=0 and -2Pi/3 otherwise"</a>.

%H F. Michel Dekking, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL19/Dekking/dekk4.html">Morphisms, Symbolic Sequences, and Their Standard Forms</a>, Journal of Integer Sequences, Vol. 19 (2016), Article 16.1.1.

%H G. J. Endrullis, D. Hendriks and J. W. Klop, <a href="http://joerg.endrullis.de/assets/papers/streams-degrees-2011.pdf">Degrees of streams</a>.

%H Dimitri Hendriks, Frits G. W. Dannenberg, Jorg Endrullis, Mark Dow and Jan Willem Klop, <a href="http://arxiv.org/abs/1201.3786">Arithmetic Self-Similarity of Infinite Sequences</a>, arXiv 1201.3786 [math.CO], 2012.

%H A. M. Hinz, S. Klavžar, U. Milutinović and C. Petr, <a href="http://dx.doi.org/10.1007/978-3-0348-0237-6">The Tower of Hanoi - Myths and Maths</a>, Birkhäuser 2013. See page 79. <a href="http://tohbook.info">Book's website</a>

%H Shuo Li, <a href="https://arxiv.org/abs/2007.08317">Palindromic length sequence of the ruler sequence and of the period-doubling sequence</a>, arXiv:2007.08317 [math.CO], 2020.

%H Laszlo Mérai and A. Winterhof, <a href="https://arxiv.org/abs/1711.10764">On the Nth linear complexity of automatic sequences</a>, arXiv preprint arXiv:1711.10764 [math.NT], 2017.

%H Jeong-Yup Lee, D. Flom and S. I. Ben-Abraham, <a href="https://doi.org/10.1107/S2053273316004897">Multidimensional period doubling structures</a>, Acta Crystallographica Section A: Foundations, (2016). A72, 391-394.

%H A. Parreau, M. Rigo, E. Rowland and E. Vandomme, <a href="http://arxiv.org/abs/1405.3532">A new approach to the 2-regularity of the l-abelian complexity of 2-automatic sequences</a>, arXiv:1405.3532 [cs.FL], 2014-2015.

%H Narad Rampersad and Manon Stipulanti, <a href="https://arxiv.org/abs/1807.11899">The Formal Inverse of the Period-Doubling Sequence</a>, arXiv:1807.11899 [math.CO], 2018.

%H Luke Schaeffer and Jeffrey Shallit, <a href="https://doi.org/10.37236/5752">Closed, Palindromic, Rich, Privileged, Trapezoidal, and Balanced Words in Automatic Sequences</a>, Electronic Journal of Combinatorics 23(1) (2016), Article P1.25.

%H <a href="/index/Fi#FIXEDPOINTS">Index entries for sequences that are fixed points of mappings</a>.

%H <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a>.

%F Recurrence: a(2*n) = 0, a(4*n+1) = 1, a(4*n+3) = a(n). - _Ralf Stephan_, Dec 11 2004

%F The recurrence may be extended backwards, with a(-1) = 1. - S. I. Ben-Abraham, Apr 01 2013

%F a(n) = 1 - A035263(n-1). - _Reinhard Zumkeller_, Aug 16 2006

%F Dirichlet g.f.: zeta(s)/(1+2^s). - _Ralf Stephan_, Jun 17 2007

%F Let T(x) be the g.f., then T(x) + T(x^2) = x^2/(1-x^2). - _Joerg Arndt_, May 11 2010

%F Let 2^k||n+1. Then a(n)=1 if k is odd, a(n)=0 if k is even. - _Vladimir Shevelev_, Aug 25 2010

%F a(n) = A007814(n+1) mod 2. - _Robert G. Wilson v_, Jan 18 2012

%F a((2*n+1)*2^p-1) = p mod 2, p >= 0 and n >= 0. - _Johannes W. Meijer_, Feb 02 2013

%F a(n) = A056832(n+1) - 1. - _Reinhard Zumkeller_, Jul 29 2014

%F Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 1/3. = _Amiram Eldar_, Sep 18 2022

%e Start: 0

%e Rules:

%e 0 --> 01

%e 1 --> 00

%e -------------

%e 0: (#=1)

%e 0

%e 1: (#=2)

%e 01

%e 2: (#=4)

%e 0100

%e 3: (#=8)

%e 01000101

%e 4: (#=16)

%e 0100010101000100

%e 5: (#=32)

%e 01000101010001000100010101000101

%e 6: (#=64)

%e 0100010101000100010001010100010101000101010001000100010101000100

%e 7: (#=128)

%e 010001010100010001000101010001010100010101000100010001010100010001000101010...

%e [_Joerg Arndt_, Jul 06 2011]

%p nmax:=104: for p from 0 to ceil(simplify(log[2](nmax))) do for n from 0 to ceil(nmax/(p+2))+1 do a((2*n+1)*2^p-1) := p mod 2 od: od: seq(a(n), n=0..nmax); # _Johannes W. Meijer_, Feb 02 2013

%p # second Maple program:

%p a:= proc(n) a(n):= `if`(n::even, 0, 1-a((n-1)/2)) end:

%p seq(a(n), n=0..125); # _Alois P. Heinz_, Mar 20 2019

%t Nest[ Flatten[ # /. {0 -> {1, 0}, 1 -> {0, 0}}] &, {1}, 7] (* _Robert G. Wilson v_, Mar 05 2005 *)

%t {{0}}~Join~SubstitutionSystem[{0 -> {0, 1}, 1 -> {0, 0}}, {1}, 6] // Flatten (* _Michael De Vlieger_, Aug 15 2016, Version 10.2 *)

%o (PARI) a(n)=valuation(n+1,2)%2 \\ _Ralf Stephan_, Nov 11 2013

%o (Haskell)

%o a096268 = (subtract 1) . a056832 . (+ 1)

%o -- _Reinhard Zumkeller_, Jul 29 2014

%o (Magma) [Valuation(n+1, 2) mod 2: n in [0..100]]; // _Vincenzo Librandi_, Jul 20 2016

%o (Python)

%o def A096268(n): return (~(n+1)&n).bit_length()&1 # _Chai Wah Wu_, Jan 09 2023

%Y Not the same as A073059!

%Y Swapping 0 and 1 gives A035263.

%Y Cf. A096269, A096270, A071858, A220466, A036577.

%Y Cf. A056832, A123087 (partial sums).

%Y With offset 1, classification indicator for A003159/A036554.

%Y Also with offset 1: A007814 mod 2 (cf. A096271 for mod 3), A048675 mod 2 (cf. A332813 for mod 3), A059975 mod 2.

%K nonn

%O 0,1

%A _N. J. A. Sloane_, Jun 22 2004

%E Corrected by _Jeremy Gardiner_, Dec 12 2004

%E More terms from _Robert G. Wilson v_, Feb 26 2005

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 4 17:49 EDT 2024. Contains 373102 sequences. (Running on oeis4.)