The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A091137 The Hirzebruch numbers. a(n) = Product_{2 <= p <= n+1, p prime} p^floor(n / (p - 1)). 41

%I #67 Dec 14 2023 17:36:23

%S 1,2,12,24,720,1440,60480,120960,3628800,7257600,479001600,958003200,

%T 2615348736000,5230697472000,31384184832000,62768369664000,

%U 32011868528640000,64023737057280000,51090942171709440000,102181884343418880000,33720021833328230400000,67440043666656460800000

%N The Hirzebruch numbers. a(n) = Product_{2 <= p <= n+1, p prime} p^floor(n / (p - 1)).

%C Largest number m such that number of times m divides k! is almost k/n for large k, i.e., largest m with A090624(m) = n.

%C This is always a relatively small multiple of n!, since the multiplicity with which a prime p divides n! is always <= n/(p-1); it is equal to floor(n/(p-1)) at least when n is a power of p. - _Franklin T. Adams-Watters_, May 31 2010

%C At least for most small n, a(n) = A002790(n) * n!; the first difference is n=15. It appears that A002790(n) * n! always divides a(n).

%C Conjecture: The denominators of the series reversion of the sequence with e.g.f. Polylog(2,x). - _Benedict W. J. Irwin_, Jan 05 2017

%D P. Curtz, Integration numérique ..., Note 12, C.C.S.A., Arcueil, 1969; see pp. 36, 56.

%D F. Hirzebruch, Topological Methods in Algebraic Geometry, Springer, 3rd. ed., 1966; Lemma 1.7.3, p. 14. [From _N. J. A. Sloane_, Sep 06 2010]

%H Michael De Vlieger, <a href="/A091137/b091137.txt">Table of n, a(n) for n = 0..443</a>

%H Abdelmalek Bedhouche and Bakir Farhi, <a href="https://arxiv.org/abs/2207.07957">On some products taken over the prime numbers</a>, arXiv:2207.07957 [math.NT], 2022. See sigma_n p. 3.

%H Victor M. Buchstaber and Alexander P. Veselov, <a href="https://doi.org/10.48550/arXiv.2310.07383">Todd polynomials and Hirzebruch numbers</a>, arXiv:2310.07383 [math.AT], Oct. 2023.

%F a(n) = Product_p {p prime} p^floor(n/(p-1)).

%F a(2n+1) = 2*a(2n).

%F a(n+1) = A027760(n+1)*a(n). - _Paul Curtz_, Aug 01 2008

%F From _Peter Luschny_, Dec 11 2023: (Start)

%F a(n) = lcm_{p in P(n)} Product_{r in p}(r + 1), where P(n) are the partitions of n.

%F a(n) = lcm(A238963row(n)).

%F a(n) = A368116(1, n), seen as the lcm of the product of the 1-shifted partitions.

%F a(n) = A368093(1, n), seen as the cumulative product of the Clausen numbers A160014(1, n). (End)

%e Let n = 4. The partitions of 4 are [[4], [3, 1], [2, 2], [2, 1, 1], [1, 1, 1, 1]]. Thus a(4) = lcm([5, 4*2, 3*3, 3*2*2, 2*2*2*2]) = 720.

%p A091137 := proc(n) local a,i,p ; a := 1 ; for i from 1 do p := ithprime(i) ; if p > n+1 then break; fi; a := a*p^floor(n/(p-1)) ; od: a ; end: for n from 0 to 20 do printf("%a,",A091137(n) ) ; od: # _R. J. Mathar_, Feb 23 2009

%t A027760[n_] := Product[d, {d, Select[ Divisors[n] + 1, PrimeQ]}]; a[n_] := a[n] = A027760[n]*a[n-1]; a[0] = 1; Table[ a[n], {n, 0, 18}] (* _Jean-François Alcover_, Oct 04 2011 *)

%o (PARI) a(n) = local(r); r=1; forprime(p=2, n+1, r*=p^(n\(p-1))); r

%o \\ _Franklin T. Adams-Watters_, May 31 2010

%o (Python)

%o from math import prod

%o from sympy import primerange

%o def A091137(n): return prod(p**(n//(p-1)) for p in primerange(n+2))

%o # _Chai Wah Wu_, Apr 28 2023

%o (SageMath)

%o def a(n): return lcm(product(r + 1 for r in p) for p in Partitions(n))

%o # Or, more efficient:

%o from functools import cache

%o @cache

%o def a_rec(n):

%o if n == 0: return 1

%o p = mul(s for s in map(lambda i: i + 1, divisors(n)) if is_prime(s))

%o return p * a_rec(n - 1)

%o print([a_rec(n) for n in range(22)]) # _Peter Luschny_, Dec 12 2023

%Y Starts similarly to A002207 especially for even n and all values of A002207 seen so far seem to divide a(n).

%Y Cf. A090622, A090624, A091136, A171080, A238963, A368093, A368116.

%Y Cf. A002790, A000142. - _Franklin T. Adams-Watters_, May 31 2010

%K nonn

%O 0,2

%A _Henry Bottomley_, Dec 19 2003

%E New name using a formula of the author by _Peter Luschny_, Dec 11 2023

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 4 02:51 EDT 2024. Contains 373089 sequences. (Running on oeis4.)