The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A087107 This table shows the coefficients of combinatorial formulas needed for generating the sequential sums of p-th powers of tetrahedral numbers. The p-th row (p>=1) contains a(i,p) for i=1 to 3*p-2, where a(i,p) satisfies Sum_{i=1..n} C(i+2,3)^p = 4 * C(n+3,4) * Sum_{i=1..3*p-2} a(i,p) * C(n-1,i-1)/(i+3). 12

%I #28 Mar 11 2018 13:26:12

%S 1,1,3,3,1,1,15,69,147,162,90,20,1,63,873,5191,16620,31560,36750,

%T 25830,10080,1680,1,255,9489,130767,919602,3832650,10238000,18244380,

%U 21990360,17745000,9198000,2772000,369600,1,1023,97953,2903071,40317780

%N This table shows the coefficients of combinatorial formulas needed for generating the sequential sums of p-th powers of tetrahedral numbers. The p-th row (p>=1) contains a(i,p) for i=1 to 3*p-2, where a(i,p) satisfies Sum_{i=1..n} C(i+2,3)^p = 4 * C(n+3,4) * Sum_{i=1..3*p-2} a(i,p) * C(n-1,i-1)/(i+3).

%C Let s_n denote the sequence (1, 4^n, 10^n, 20^n, ...) regarded as an infinite column vector, where 1, 4, 10, 20, ... is the sequence of tetrahedral numbers A000292. It appears that the n-th row of this table is determined by the matrix product P^(-1)s_n, where P denotes Pascal's triangle A007318. - _Peter Bala_, Nov 26 2017

%C From _Peter Bala_, Mar 11 2018: (Start)

%C The observation above is correct.

%C The table entries T(n,k) are the coefficients when expressing the polynomial C(x+3,3)^p of degree 3*p in terms of falling factorials: C(x+3,3)^p = Sum_{k = 0..3*p} T(p,k)*C(x,k). It follows that Sum_{i = 0..n-1} C(i+3,3)^p = Sum_{k = 0..3*p} T(p,k)*C(n,k+1).

%C The sum of the p-th powers of the tetrahedral numbers is also given by Sum_{i = 0..n-1} C(i+3,3)^p = Sum_{k = 3..3*p} A299041(p,k)*C(n+3,k+1) for p >= 1. (End)

%H G. C. Greubel, <a href="/A087107/b087107.txt">Table of n, a(n) for the first 50 rows, flattened</a>

%H Dukes, C. D. White, <a href="http://arxiv.org/abs/1603.01589">Web Matrices: Structural Properties and Generating Combinatorial Identities</a>, arXiv:1603.01589 [math.CO], 2016.

%F a(i, p) = Sum_{k=1..[2*i+1+(-1)^(i-1)]/4} [ C(i-1, 2*k-2)*C(i-2*k+4, i-2*k+1)^(p-1) -C(i-1, 2*k-1)*C(i-2*k+3, i-2*k)^(p-1) ].

%F From _Peter Bala_, Nov 26 2017: (Start)

%F Conjectural formula for table entries: T(n,k) = Sum_{j = 0..k} (-1)^(k+j)*binomial(k,j)*binomial(j+3,3)^n.

%F Conjecturally, the n-th row polynomial R(n,x) = 1/(1 + x)*Sum_{i >= 0} binomial(i+3,3)^n *(x/(1 + x))^n. (End)

%F From _Peter Bala_, Mar 11 2018: (Start)

%F The conjectures above are correct.

%F The following remarks assume the row and column indices start at 0.

%F T(n+1,k) = C(k+3,3)*T(n,k) + 3*C(k+2,3)*T(n,k-1) + 3*C(k+1,3)*T(n,k-2) + C(k,3)*T(n,k-3) with boundary conditions T(n,0) = 1 for all n and T(n,k) = 0 for k > 3*n.

%F Sum_{k = 0..3*n} T(n,k)*binomial(x,k) = (binomial(x+3,3))^n.

%F x^3*R(n,x) = (1 + x)^3 * the n-th row polynomial of A299041.

%F R(n+1,x) = 1/3!*(1 + x)^3*(d/dx)^3 (x^3*R(n,x)).

%F (1 - x)^(3*n)*R(n,x/(1 - x)) gives the n-th row polynomial of A174266.

%F R(n,x) = (1 + x)^3 o (1 + x)^3 o ... o (1 + x)^3 (n factors), where o denotes the black diamond product of power series defined in Dukes and White. Note the polynomial x^3 o ... o x^3 (n factors) is the n-th row polynomial of A299041. (End)

%e Row 3 contains 1,15,69,147,162,90,20, so Sum_{i=1..n} C(i+2,3)^3 = 4 * C(n+3,4) * [ a(1,3)/4 + a(2,3)*C(n-1,1)/5 + a(3,3)*C(n-1,2)/6 + ... + a(7,3)*C(n-1,6)/10 ] = 4 * C(n+3,4) * [ 1/4 + 15*C(n-1,1)/5 + 69*C(n-1,2)/6 + 147*C(n-1,3)/7 + 162*C(n-1,4)/8 + 90*C(n-1,5)/9 + 20*C(n-1,6)/10 ]. Cf. A086021 for more details.

%e From _Peter Bala_, Mar 11 2018: (Start)

%e Table begins

%e n=0 | 1

%e n=1 | 1 3 3 1

%e n=2 | 1 15 69 147 162 90 20

%e n=3 | 1 63 873 5191 16620 31560 36750 25830 10080 1680

%e ...

%e Row 2: C(i+3,3)^2 = C(i,0) + 15*C(i,1) + 69*C(i,2) + 147*C(i,3) + 162*C(i,4) + 90*C(i,5) + 20*C(i,6). Hence, Sum_{i = 0..n-1} C(i+3,3)^2 = C(n,1) + 15*C(n,2) + 69*C(n,3) + 147*C(n,4) + 162*C(n,5) + 90*C(n,6) + 20*C(n,7). (End)

%p seq(seq(add( (-1)^(k-i)*binomial(k, i)*binomial(i+3, 3)^n, i= 0..k), k = 0..3*n), n = 0..8); # _Peter Bala_, Mar 11 2018

%t a[i_, p_] := Sum[Binomial[i - 1, 2*k - 2]*Binomial[i - 2*k + 4, i - 2*k + 1]^(p - 1) - Binomial[i - 1, 2*k - 1]*Binomial[i - 2*k + 3, i - 2*k]^(p - 1), {k, 1, (2*i + 1 + (-1)^(i - 1))/4}]; Table[If[p == 1, 1, a[i, p]], {p, 1, 10}, {i, 1, 3*p - 2}]//Flatten (* _G. C. Greubel_, Nov 23 2017 *)

%o (PARI) {a(i, p) = sum(k=1, (2*i + 1 + (-1)^(i - 1))/4, binomial(i - 1, 2*k - 2)*binomial(i - 2*k + 4, i - 2*k + 1)^(p - 1) - binomial(i - 1, 2*k - 1)*binomial(i - 2*k + 3, i - 2*k)^(p - 1))}; for(p=1,8, for(i=1, 3*p-2, print1(if(p==1,1,a(i,p)), ", "))) \\ _G. C. Greubel_, Nov 23 2017

%Y Cf. A000292, A024166, A087127, A024166, A085438, A085439, A085440, A085441, A085442, A000332, A086020, A086021, A086022, A087108, A000389, A086023, A086024, A087109, A000579, A086025, A086026, A087110, A000580, A086027, A086028, A087111, A027555, A086029, A086030.

%Y Cf. A087127, A087110, A174266, A299041.

%K easy,nonn,tabf

%O 1,3

%A _André F. Labossière_, Aug 11 2003

%E Edited by _Dean Hickerson_, Aug 16 2003

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 14 12:38 EDT 2024. Contains 372533 sequences. (Running on oeis4.)