The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A086902 a(n) = 7*a(n-1) + a(n-2), starting with a(0) = 2 and a(1) = 7. 36

%I #36 May 25 2023 17:56:44

%S 2,7,51,364,2599,18557,132498,946043,6754799,48229636,344362251,

%T 2458765393,17555720002,125348805407,894997357851,6390330310364,

%U 45627309530399,325781497023157,2326097788692498,16608466017870643,118585359913786999,846705985414379636

%N a(n) = 7*a(n-1) + a(n-2), starting with a(0) = 2 and a(1) = 7.

%C a(n+1)/a(n) converges to (7+sqrt(53))/2 = 7.14005... = A176439.

%C Lim a(n)/a(n+1) as n approaches infinity = 0.1400549... = 2/(7+sqrt(53)) = (sqrt(53)-7)/2 = 1/A176439 = A176439 - 7.

%C From _Johannes W. Meijer_, Jun 12 2010: (Start)

%C In general sequences with recurrence a(n) = k*a(n-1)+a(n-2) with a(0)=2 and a(1)=k [and a(-1)=0] have generating function (2-k*x)/(1-k*x-x^2). If k is odd (k>=3) they satisfy a(3n+1) = b(5n), a(3n+2)=b(5*n+3), a(3n+3)=2*b(5n+4) where b(n) is the sequence of numerators of continued fraction convergents to sqrt(k^2+4). [If k is even then a(n)/2, for n>=1, is the sequence of numerators of continued fraction convergents to sqrt(k^2/4+1).]

%C For the sequence given above k=7 which implies that it is associated with A041090.

%C For a similar statement about sequences with recurrence a(n) = k*a(n-1)+a(n-2) but with a(0)=1 [and a(-1)=0] see A054413; a sequence that is associated with A041091.

%C For more information follow the Khovanova link and see A087130, A140455 and A178765.

%C (End)

%H Vincenzo Librandi, <a href="/A086902/b086902.txt">Table of n, a(n) for n = 0..1000</a>

%H Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>

%H <a href="/index/Rea#recur1">Index entries for recurrences a(n) = k*a(n - 1) +/- a(n - 2)</a>

%H <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials.</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (7,1).

%F a(n) = ((7+sqrt(53))/2)^n + ((7-sqrt(53))/2)^n.

%F E.g.f. : 2exp(7x/2)cosh(sqrt(53)x/2); a(n)=2^(1-n)sum{k=0..floor(n/2), C(n, 2k)53^k7^(n-2k)}. a(n)=2T(n, 7i/2)(-i)^n with T(n, x) Chebyshev's polynomials of the first kind (see A053120) and i^2=-1. - _Paul Barry_, Nov 15 2003

%F G.f.: (2-7x)/(1-7x-x^2). - _Philippe Deléham_, Nov 16 2008

%F From _Johannes W. Meijer_, Jun 12 2010: (Start)

%F a(2n+1) = 7*A097837(n), a(2n) = A099368(n).

%F a(3n+1) = A041090(5n), a(3n+2) = A041090(5*n+3), a(3n+3) = 2*A041090(5n+4).

%F Limit(a(n+k)/a(k), k=infinity) = (A086902(n) + A054413(n-1)*sqrt(53))/2.

%F Limit(A086902(n)/A054413(n-1), n=infinity) = sqrt(53). (End)

%e a(4) = 7*a(3) + a(2) = 7*364 + 51 = 2599.

%t RecurrenceTable[{a[0] == 2, a[1] == 7, a[n] == 7 a[n-1] + a[n-2]}, a, {n, 30}] (* _Vincenzo Librandi_, Sep 19 2016 *)

%t LinearRecurrence[{7,1},{2,7},30] (* _Harvey P. Dale_, May 25 2023 *)

%o (PARI) a(n)=([0,1; 1,7]^n*[2;7])[1,1] \\ _Charles R Greathouse IV_, Apr 06 2016

%o (Magma) I:=[2,7]; [n le 2 select I[n] else 7*Self(n-1)+Self(n-2): n in [1..30]]; // _Vincenzo Librandi_, Sep 19 2016

%Y Cf. A058316, A176439.

%Y Cf. A000032 (k=1), A006497 (k=3), A087130 (k=5), A086902 (k=7), A087798 (k=9), A001946 (k=11), A088316 (k=13), A090301 (k=15), A090306 (k=17). - _Johannes W. Meijer_, Jun 12 2010

%K nonn,easy

%O 0,1

%A Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Sep 18 2003

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 21 05:34 EDT 2024. Contains 372728 sequences. (Running on oeis4.)