The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A082267 Number of palindromes that use nonzero digits and have a digit sum of n. 3
1, 2, 2, 4, 4, 8, 8, 16, 16, 31, 31, 62, 62, 124, 124, 248, 248, 496, 496, 991, 991, 1980, 1980, 3956, 3956, 7904, 7904, 15792, 15792, 31553, 31553, 63044, 63044, 125964, 125964, 251680, 251680, 502864, 502864, 1004737, 1004737, 2007494, 2007494 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
Consider the array in which the n-th row contains all the palindromes that use nonzero digits and have a digit sum of n:
1
2 11
3 111
4 22 121 1111
5 131 212 11111
6 33 141 222 11211 1221 2112 111111
...
a(n) = number of partitions of n into parts < 10 (single-digit nonzero parts) that can be arranged to form a palindrome.
LINKS
FORMULA
a(1) = 1, a(2) = 2. For 2<n<10 and 11<n<20, a(n) = 2 * a(n-2). For n=10, 11 or 20, a(n) = 2 * a(n-2) - 1. Otherwise, for 21<=n, a(n) = 2 * a(n-2) - a(n-20). - Jonathan R. Love (japanada11(AT)yahoo.ca), Mar 08 2007
Further remarks from Jonathan R. Love (japanada11(AT)yahoo.ca), Mar 08 2007: (Start) For 2<n<10: a(9) = 16 because it can be written as 9, 4(1)4, 3(3)3, 2(5)2, or 1(7)1. All (n) can be expanded into a(n) different terms; for example, 2(5)2 can be written as 2(11111)2, 2(131)2, 2(212)2, or 2(5)2: 4 terms, since a(5) = 4. So a(9) = 1 + a(1) + a(3) + a(5) + a(7). Since a(7) = 1 + a(1) + a(3) + a(5), a(9) = a(7) + a(7) = 2 * a(7).
For n=10 or 11: Using the rules for 2<n<10, a(10) would be 32, but since one of these terms is the number itself, in this case 10 and only single-digit numbers can be used, one term must be subtracted. a(10) = 2 * a(8) - 1 = 31.
For 12<n<20: The same rules for 2<n<10 apply, because for 12 and up, the term taken away from 10 and 11 is added into the terms: a(12) = 62 = 2 * a(10). a(10) = 2 * a(8) - 1, so a(12) = 4 * a(8) - 2: 1 for (12) and one for 1(10)1.
For 20: Including the terms subtracted in 12<n<20, another term must be subtracted for (10)(10).
For 21<=n: From this point on, all possible terms are 9(a(n-18))9 + 8(a(n-16))8 + 7(a(n-14))7 + 6(a(n-12))6 + 5(a(n-10))5 + 4(a(n-8))4 + 3(a(n-6))3 + 2(a(n-4))2 + 1(a(n-2))1. If a(n-20) were to be included, it would need to be (10)(a(n-20))(10) and 10s can't be included. So everything must subtract a(n-20) from the total of 2 * a(n-2). For example, a(24) = 3956 = 2 * a(22) - a(4). (End)
Let c(n,k) (1<=k<=n) = number of compositions of n into parts of size <= k (cf. A126198). Then a(n) = Sum_{i=0..floor(n/2)} c(n,9). This follows by consideration of the central term, which may be any of n, n-2, n-4, ..., n-2i, ...; the prefix is then a composition of i into parts of size <= 9. - N. J. A. Sloane Mar 09 2007
From Colin Barker, Feb 14 2013: (Start)
a(n) = 2*a(n-2) - a(n-20) for n > 20.
G.f.: x*(1+2*x-x^9-x^10-x^19) / (1-2*x^2+x^20). (End)
MAPLE
seq(coeff(series(x*(1+2*x-x^9-x^10-x^19)/(1-2*x^2+x^20), x, n+1), x, n), n = 1 .. 42); # Muniru A Asiru, Dec 08 2018
CROSSREFS
Sequence in context: A325722 A279818 A263614 * A338739 A076939 A117575
KEYWORD
base,nonn
AUTHOR
Amarnath Murthy, Apr 12 2003
EXTENSIONS
Corrected and extended by Jonathan R. Love, Mar 08 2007
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 23 13:38 EDT 2024. Contains 372763 sequences. (Running on oeis4.)