The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A079586 Decimal expansion of Sum_{k>=1} 1/F(k) where F(k) is the k-th Fibonacci number A000045(k). 41

%I #117 Nov 15 2023 14:38:59

%S 3,3,5,9,8,8,5,6,6,6,2,4,3,1,7,7,5,5,3,1,7,2,0,1,1,3,0,2,9,1,8,9,2,7,

%T 1,7,9,6,8,8,9,0,5,1,3,3,7,3,1,9,6,8,4,8,6,4,9,5,5,5,3,8,1,5,3,2,5,1,

%U 3,0,3,1,8,9,9,6,6,8,3,3,8,3,6,1,5,4,1,6,2,1,6,4,5,6,7,9,0,0,8,7,2,9,7,0,4

%N Decimal expansion of Sum_{k>=1} 1/F(k) where F(k) is the k-th Fibonacci number A000045(k).

%C André-Jeannin proved that this constant is irrational.

%C This constant does not belong to the quadratic number field Q(sqrt(5)) (Bundschuh and Väänänen, 1994). - _Amiram Eldar_, Oct 30 2020

%D Daniel Duverney, Number Theory, World Scientific, 2010, 5.22, pp.75-76.

%D Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, p. 358.

%H Kenny Lau, <a href="/A079586/b079586.txt">Table of n, a(n) for n = 1..10000</a> (First 1000 terms computed by Joerg Arndt)

%H Richard André-Jeannin, <a href="http://gallica.bnf.fr/ark:/12148/bpt6k5686125p/f9.image">Irrationalité de la somme des inverses de certaines suites récurrentes</a>, Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 308:19 (1989), pp. 539-541.

%H Richard André-Jeannin, <a href="https://fq.math.ca/Scanned/29-1/advanced29-1.pdf">Problem H-450</a>, Advanced Problems and Solutions, The Fibonacci Quarterly, Vol. 29, No. 1 (1991), p. 89; <a href="https://www.fq.math.ca/Scanned/30-2/advanced30-2.pdf">Comparable</a>, Solution to Problem H-450 by Paul S. Bruckman, ibid., Vol. 30, No. 2 (1992), p. 191-192.

%H Richard André-Jeannin, <a href="https://www.fq.math.ca/Scanned/29-3/andre-jeannin2.pdf">Sequences of Integers Satisfying Recurrence Relations</a>, The Fibonacci Quarterly, Vol. 29, No. 3 (1991), pp. 205-208;

%H Joerg Arndt, <a href="http://arxiv.org/abs/1202.6525">On computing the generalized Lambert series</a>, arXiv:1202.6525v3 [math.CA], (2012).

%H Paul S. Bruckman, <a href="https://fq.math.ca/Scanned/25-3/elementary25-3.pdf">Problem B-602</a>, Elementary Problems and Solutions, The Fibonacci Quarterly, Vol. 25, No. 3 (1987), p. 279; <a href="https://www.fq.math.ca/Scanned/26-3/elementary26-3.pdf">Fibonacci Infinite Series</a>, Solution to Problem B-602 by C. Georghiou, ibid., Vol. 26, No. 3 (1988), pp. 281-282.

%H Peter Bundschuh and Keijo Väänänen, <a href="https://eudml.org/doc/90288">Arithmetical investigations of a certain infinite product</a>, Compositio Mathematica, Vol. 91, No. 2 (1994), pp. 175-199.

%H Daniel Duverney, <a href="https://doi.org/10.1007/s000170050008">Irrationalité de la somme des inverses de la suite Fibonacci</a>, Elemente der Mathematik, Vol. 52, No. 1 (1997), pp. 31-36.

%H William Gosper, <a href="http://dspace.mit.edu/handle/1721.1/6088">Acceleration of Series</a>, Artificial Intelligence Memo #304 (1974).

%H W. E. Greig, <a href="https://www.fq.math.ca/Scanned/15-1/greig2.pdf">Sums of Fibonacci reciprocals</a>, The Fibonacci Quarterly, Vol. 15, No. 1 (1977), pp. 46-48.

%H Peter Griffin, <a href="https://www.fq.math.ca/Scanned/30-2/griffin.pdf"> Acceleration of the Sum of Fibonacci Reciprocals</a>, The Fibonacci Quarterly, Vol. 30, No. 2 (1992), pp. 179-181.

%H Sarah H. Holliday and Takao Komatsu, <a href="https://web.archive.org/web/20150911130411/http://www.westga.edu/~integers/a9int2009/a9int2009.pdf">On the sum of reciprocal generalized Fibonacci numbers</a>, Integers 11A (2011), Article 11. Alternate <a href="https://doi.org/10.1515/integ.2011.031">link</a>.

%H A. F. Horadam, <a href="http://www.fq.math.ca/Scanned/26-2/horadam.pdf">Elliptic functions and Lambert series in the summation of reciprocals in certain recurrence-generated sequences</a>, The Fibonacci Quarterly, Vol. 26, No.2 (May-1988), pp. 98-114.

%H Fredrik Johansson, <a href="https://fredrikj.net/blog/2023/11/the-reciprocal-fibonacci-constant/">The reciprocal Fibonacci constant</a>.

%H Paul Kinlaw, Michael Morris, and Samanthak Thiagarajan, <a href="https://www.researchgate.net/publication/350886459_SUMS_RELATED_TO_THE_FIBONACCI_SEQUENCE">Sums related to the Fibonacci sequence</a>, Husson University (2021).

%H Tapani Matala-Aho and Marc Prévost, <a href="https://web.archive.org/web/20161020172636/http://cc.oulu.fi/~tma/TAPANI20.pdf">Quantitative irrationality for sums of reciprocals of Fibonacci and Lucas numbers</a>, Ramanujan J., Vol. 11 (2006), pp. 249-261.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ReciprocalFibonacciConstant.html">Reciprocal Fibonacci Constant</a>.

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Reciprocal_Fibonacci_constant">Reciprocal Fibonacci constant</a>.

%F Alternating series representation: 3 + Sum_{k >= 1} (-1)^(k+1)/(F(k)*F(k+1)*F(k+2)). - _Peter Bala_, Nov 30 2013

%F From _Amiram Eldar_, Oct 04 2020: (Start)

%F Equals sqrt(5) * Sum_{k>=0} (1/(phi^(2*k+1) - 1) - 2*phi^(2*k+1)/(phi^(4*(2*k+1)) - 1)), where phi is the golden ratio (A001622) (Greig, 1977).

%F Equals sqrt(5) * Sum_{k>=0} (-1)^k/(phi^(2*k+1) - (-1)^k) (Griffin, 1992).

%F Equals A153386 + A153387. (End)

%F From _Gleb Koloskov_, Sep 14 2021: (Start)

%F Equals 1 + c1*(c2 + 32*Integral_{x=0..infinity} f(x) dx),

%F where c1 = sqrt(5)/(8*log(phi)) = A002163/(8*A002390),

%F c2 = 2*arctan(2)+log(5) = 2*A105199+A016628,

%F phi = (1+sqrt(5))/2 = A001622,

%F f(x) = sin(x)*(4+cos(2*x))/((exp(Pi*x/log(phi))-1)*(2*cos(2*x)+3)*(7-2*cos(2*x))) (End)

%F From _Amiram Eldar_, Jan 27 2022: (Start)

%F Equals 3 + 2 * Sum_{k>=1} 1/(F(2*k-1)*F(2*k+1)*F(2*k+2)) (Bruckman, 1987).

%F Equals 2 + Sum_{k>=1} 1/A350901(k) (André-Jeannin, Problem H-450, 1991).

%F Equals lim_{n->oo} A350903(n)/(A350904(n)*A350902(n)) (André-Jeannin, 1991). (End)

%F Equals sqrt(5/4)*Sum_{j>=1} i^(1-j)/sin(j*c) where c = Pi/2 + i*arccsch(2). - _Peter Luschny_, Nov 15 2023

%e 3.35988566624317755317201130291892717968890513373...

%p Digits := 120: c := Pi/2 + I*arccsch(2):

%p Jeannin := n -> sqrt(5/4)*add(I^(1-j)/sin(j*c), j = 1..n):

%p evalf(Jeannin(1000)); # _Peter Luschny_, Nov 15 2023

%t digits = 105; Sqrt[5]*NSum[(-1)^n/(GoldenRatio^(2*n + 1) - (-1)^n), {n, 0, Infinity}, WorkingPrecision -> digits, NSumTerms -> digits] // RealDigits[#, 10, digits] & // First (* _Jean-François Alcover_, Apr 09 2013 *)

%t First@RealDigits[Sqrt[5]/4 ((Log[5] + 2 QPolyGamma[1, 1/GoldenRatio^4] - 4 QPolyGamma[1, 1/GoldenRatio^2])/(2 Log[GoldenRatio]) + EllipticTheta[2, 0, 1/GoldenRatio^2]^2), 10, 105] (* _Vladimir Reshetnikov_, Nov 18 2015 *)

%o (PARI) /* Fast computation without splitting into even and odd indices, see the Arndt reference */

%o lambert2(x, a, S)=

%o {

%o /* Return G(x,a) = Sum_{n>=1} a*x^n/(1-a*x^n) (generalized Lambert series)

%o computed as Sum_{n=1..S} x^(n^2)*a^n*( 1/(1-x^n) + a*x^n/(1-a*x^n) )

%o As series in x correct up to order S^2.

%o We also have G(x,a) = Sum_{n>=1} a^n*x^n/(1-x^n) */

%o return( sum(n=1,S, x^(n^2)*a^n*( 1/(1-x^n) + a*x^n/(1-a*x^n) ) ) );

%o }

%o inv_fib_sum(p=1, q=1, S)=

%o {

%o /* Return Sum_{n>=1} 1/f(n) where f(0)=0, f(1)=1, f(n) = p*f(n-1) + q*f(n-1)

%o computed using generalized Lambert series.

%o Must have p^2+4*q > 0 */

%o my(al,be);

%o \\ Note: the q here is -q in the Horadam paper.

%o \\ The following numerical examples are for p=q=1:

%o al=1/2*(p+sqrt(p^2+4*q)); \\ == +1.6180339887498...

%o be=1/2*(p-sqrt(p^2+4*q)); \\ == -0.6180339887498...

%o return( (al-be)*( 1/(al-1) + lambert2(be/al, 1/al, S) ) ); \\ == 3.3598856...

%o }

%o default(realprecision,100);

%o S = 1000; /* (be/al)^S == -0.381966^S == -1.05856*10^418 << 10^-100 */

%o inv_fib_sum(1,1,S) /* 3.3598856... */ /* _Joerg Arndt_, Jan 30 2011 */

%o (PARI) suminf(k=1, 1/(fibonacci(k))) \\ _Michel Marcus_, Feb 19 2019

%o (Sage) m=120; numerical_approx(sum(1/fibonacci(k) for k in (1..10*m)), digits=m) # _G. C. Greubel_, Feb 20 2019

%Y Cf. A000045, A000796, A001622, A002163, A002390, A084119, A093540, A016628, A105199, A153386, A153387.

%Y Cf. A350901, A350902, A350903, A350904.

%K cons,nonn

%O 1,1

%A _Benoit Cloitre_, Jan 26 2003

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 14 16:21 EDT 2024. Contains 372533 sequences. (Running on oeis4.)