The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A078008 Expansion of (1-x)/( (1+x)*(1-2*x) ). 133

%I #182 May 13 2024 11:43:16

%S 1,0,2,2,6,10,22,42,86,170,342,682,1366,2730,5462,10922,21846,43690,

%T 87382,174762,349526,699050,1398102,2796202,5592406,11184810,22369622,

%U 44739242,89478486,178956970,357913942,715827882,1431655766,2863311530,5726623062

%N Expansion of (1-x)/( (1+x)*(1-2*x) ).

%C Conjecture: a(n) = the number of fractions in the infinite Farey row of 2^n terms with even denominators. Compare the Salamin & Gosper item in the Beeler et al. link. - _Gary W. Adamson_, Oct 27 2003

%C Counts closed walks starting and ending at the same vertex of a triangle. 3*a(n) = P(C_n, 3) chromatic polynomial for 3 colors on cyclic graph C_n. A078008(n) + 2*A001045(n) = 2^n provides decomposition of Pascal's triangle. - _Paul Barry_, Nov 17 2003

%C Permutations with one fixed point avoiding 123 and 132.

%C General form: iterate k -> 2^n - k. See also A001045. - _Vladimir Joseph Stephan Orlovsky_, Dec 11 2008

%C The inverse g.f. generates sequence 1, 0, -2, -2, -2, -2, ...

%C a(n) gives the number of oriented (i.e., unreduced for symmetry) meanders on an (n+2) X 3 rectangular grid; see A201145. - _Jon Wild_, Nov 22 2011

%C Pisano period lengths: 1, 1, 6, 1, 4, 6, 6, 2, 18, 4, 10, 6, 12, 6, 12, 2, 8, 18, 18, 4, ... - _R. J. Mathar_, Aug 10 2012

%C a(n) is the number of length n binary words that end in an odd length run of 0's if we do not include the first letter of the word in our run length count. a(4) =6 because we have 0000, 0010, 0110, 1000, 1010, 1110. - _Geoffrey Critzer_, Dec 16 2013

%C a(n) is the top left entry of the n-th power of any of the six 3 X 3 matrices [0, 1, 1; 1, 1, 1; 1, 0, 0], [0, 1, 1; 1, 1, 0; 1, 1, 0], [0, 1, 1; 1, 0, 1; 1, 1, 0], [0, 1, 1; 1, 1, 0; 1, 0, 1], [0, 1, 1; 1, 0, 1; 1, 0, 1] or [0, 1, 1; 1, 0, 0; 1, 1, 1]. - _R. J. Mathar_, Feb 04 2014

%C a(n) is the number of compositions of n into parts of two kinds without part 1. - _Gregory L. Simay_, Jun 04 2018

%C a(n) is the number of words of length n over a binary alphabet whose position in the lexicographic order is a multiple of three. a(3) = 2: aba, bab. - _Alois P. Heinz_, Apr 13 2022

%C a(n) is the number of words of length n over a ternary alphabet starting with a fixed letter (say, 'a') and ending in a different letter, such that no two adjacent letters are the same. a(4) = 6: abab, abac, abcb, acab, acac, acbc. - _Ignat Soroko_, Jul 19 2023

%D Kenneth Edwards, Michael A. Allen, A new combinatorial interpretation of the Fibonacci numbers squared, Part II, Fib. Q., 58:2 (2020), 169-177.

%D I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983, ex. 1.1.10a.

%H G. C. Greubel, <a href="/A078008/b078008.txt">Table of n, a(n) for n = 0..1000</a> (terms n=0..300 from T. D. Noe)

%H David Applegate, Omar E. Pol and N. J. A. Sloane, <a href="/A000695/a000695_1.pdf">The Toothpick Sequence and Other Sequences from Cellular Automata</a>, Congressus Numerantium, Vol. 206 (2010), 157-191. [There is a typo in Theorem 6: (13) should read u(n) = 4.3^(wt(n-1)-1) for n >= 2.]

%H Roland Bacher, <a href="http://arxiv.org/abs/1509.09054">Chebyshev polynomials, quadratic surds and a variation of Pascal's triangle</a>, arXiv:1509.09054 [math.CO], 2015. See Section 4.6.

%H Paul Barry, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL8/Barry/barry84.html">A Catalan Transform and Related Transformations on Integer Sequences</a>, Journal of Integer Sequences, Vol. 8 (2005), Article 05.4.5.

%H Paul Barry, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL19/Barry/barry321.html">Jacobsthal Decompositions of Pascal's Triangle, Ternary Trees, and Alternating Sign Matrices</a>, Journal of Integer Sequences, 19, 2016, #16.3.5.

%H Paul Barry, <a href="https://arxiv.org/abs/1803.06408">Three Études on a sequence transformation pipeline</a>, arXiv:1803.06408 [math.CO], 2018.

%H Paul Barry, <a href="https://arxiv.org/abs/1912.01124">A Note on Riordan Arrays with Catalan Halves</a>, arXiv:1912.01124 [math.CO], 2019.

%H Paul Barry, <a href="https://arxiv.org/abs/2004.04577">On a Central Transform of Integer Sequences</a>, arXiv:2004.04577 [math.CO], 2020.

%H Paul Barry and A. Hennessey, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL12/Barry1/barry83.html">Notes on a Family of Riordan Arrays and Associated Integer Hankel Transforms </a>, JIS 12 (2009) 09.5.3.

%H M. Beeler, R. W. Gosper, and R. C. Schroeppel, <a href="http://www.inwap.com/pdp10/hbaker/hakmem/number.html">R. HAKMEM. MIT AI Memo 239, Feb 29 1972</a>. (Item #54 by Salamin & Gosper)

%H Ji Young Choi, <a href="https://www.emis.de/journals/JIS/VOL21/Choi/choi10.html">A Generalization of Collatz Functions and Jacobsthal Numbers</a>, J. Int. Seq., Vol. 21 (2018), Article 18.5.4.

%H E. Esteves-Rams, C. L. Azana Ricardo, B. Aragon Fernandez, <a href="https://doi.org/10.1524/zkri.220.7.592.67101">An alternative expression for counting the number of close-packaged polytypes</a>, Z. Krist. 220 (2005) 592-595, eq (4)

%H Leonhard Euler, <a href="http://gallica.bnf.fr/ark:/12148/bpt6k69587/f255.double.r=introductio+in+analysin+infinitorum">Introductio in analysin infinitorum</a>, (1748), section 216.

%H Jia Huang, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL26/Huang/huang8.html">Partially Palindromic Compositions</a>, J. Int. Seq. (2023) Vol. 26, Art. 23.4.1. See p. 13.

%H T. Mansour and A. Robertson, <a href="https://arxiv.org/abs/math/0204005">Refined Restricted Permutations Avoiding Subsets of Patterns of Length Three</a>, arXiv:math/0204005 [math.CO], 2002.

%H N. J. A. Sloane, <a href="/wiki/Catalog_of_Toothpick_and_CA_Sequences_in_OEIS">Catalog of Toothpick and Cellular Automata Sequences in the OEIS</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (1,2).

%H <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials.</a>

%F Euler expands(1-x)/(1 - x - 2*x^2) into an infinite series and finds that the coefficient of the n-th term is (2^n + (-1)^n 2)/3. Section 226 shows that Euler could have easily found the recursion relation: a(n) = a(n-1) + 2a(n-2) with a(0) = 1 and a(1) = 0. - V. Frederick Rickey (fred-rickey(AT)usma.edu), Feb 10 2006. [Typos corrected by _Jaume Oliver Lafont_, Jun 01 2009]

%F a(n) = Sum_{k=0..floor(n/3)} binomial(n, f(n)+3*k) where f(n) = (0, 2, 1, 0, 2, 1, ...) = A080424(n). - _Paul Barry_, Feb 20 2003

%F E.g.f. (exp(2*x) + 2*exp(-x))/3. - _Paul Barry_, Apr 20 2003

%F a(n) = A001045(n) + (-1)^n = A000079(n) - 2*A001045(n). - _Paul Barry_, Feb 20 2003

%F a(n) = (2^n + 2*(-1)^n)/3. - Mario Catalani (mario.catalani(AT)unito.it), Aug 29 2003

%F a(n) = T(n, i/(2*sqrt(2)))(-i*sqrt(2)^n - U(n-1, i/(2*sqrt(2)))(-i*sqrt(2))^(n-1)/2 - _Paul Barry_, Nov 17 2003

%F From _Paul Barry_, Jul 30 2004: (Start)

%F a(n) = 2*a(n-1) + 2*(-1)^n for n > 0, with a(0)=1.

%F a(n) = Sum_{k=0..n} (-1)^k*(2^(n-k-1) + 0^(n-k)/2). (End)

%F a(n) = A014113(n-1) for n > 0; a(n) = A052953(n-1) - 2*(n mod 2) = sum of n-th row of the triangle in A108561. - _Reinhard Zumkeller_, Jun 10 2005

%F A137208(n+1) - 2*A137208(n) = a(n) signed. - _Paul Curtz_, Aug 03 2008

%F a(n) = A001045(n+1) - A001045(n) - _Paul Curtz_, Feb 09 2009

%F If p[1] =0, and p[i]=2, (i>1), and if A is Hessenberg matrix of order n defined by: A[i,j]=p[j-i+1], (i<=j), A[i,j]=-1, (i=j+1), and A[i,j]=0 otherwise. Then, for n>=1, a(n)=det A. - _Milan Janjic_, Apr 29 2010

%F a(n) = 2*(a(n-2) + a(n-3) + a(n-4) ... + a(0)), that is, twice the sum of all the previous terms except the last; with a(0) = 1 and a(1) = 0. - _Benoit Jubin_, Nov 21 2011

%F a(n+1) = 2*A001045(n). - _Benoit Jubin_, Nov 22 2011

%F G.f.: 1 - x + x*Q(0), where Q(k) = 1 + 2*x^2 + (2*k+3)*x - x*(2*k+1 + 2*x)/Q(k+1); (continued fraction). - _Sergei N. Gladkovskii_, Oct 05 2013

%F G.f.: 1+ x^2*Q(0), where Q(k) = 1 + 1/(1 - x*(4*k+1+2*x)/(x*(4*k+3+2*x) + 1/Q(k+1) )); (continued fraction). - _Sergei N. Gladkovskii_, Jan 01 2014

%F a(n) = 3*a(n-2) + 2*a(n-3). - _David Neil McGrath_, Sep 10 2014

%F a(n) = (-1)^n * A151575(n). - _G. C. Greubel_, Jun 28 2019

%F a(n)+a(n+1) = 2^n. - _R. J. Mathar_, Feb 24 2021

%F a(n) = -a(2-n) * (-2)^(n-1) = (3/2)*(a(n-1) + a(n-2)) - a(n-3) for all n in Z. - _Michael Somos_, Mar 18 2022

%e G.f. = 1 + 2*x^2 + 2*x^3 + 6*x^4 + 10*x^5 + 22*x^6 + ... - _Michael Somos_, Mar 18 2022

%t Table[(2^n + 2*(-1)^n)/3, {n,0,40}] (* _Vladimir Joseph Stephan Orlovsky_, Dec 11 2008; modified by _G. C. Greubel_, Jun 28 2019 *)

%t CoefficientList[Series[(1-x)/(1-x-2x^2),{x,0,40}],x] (* _Harvey P. Dale_, Mar 30 2011 *)

%t LinearRecurrence[{1, 2}, {1, 0}, 40] (* _Jean-François Alcover_, Sep 23 2017 *)

%o (PARI) a(n)=(1<<n+2*(-1)^n)/3 \\ _Charles R Greathouse IV_, Jun 10 2011

%o (Magma) [(2^n + 2*(-1)^n)/3: n in [0..40]]; // _G. C. Greubel_, Jun 28 2019

%o (Sage) [(2^n + 2*(-1)^n)/3 for n in (0..40)] # _G. C. Greubel_, Jun 28 2019

%o (GAP) List([0..40], n-> (2^n + 2*(-1)^n)/3) # _G. C. Greubel_, Jun 28 2019

%Y First differences of A001045.

%Y See A151575 for a signed version.

%Y Bisections: A047849, A020988.

%Y Cf. A151548, A139250, A151555, A153006.

%K nonn,easy,changed

%O 0,3

%A _N. J. A. Sloane_, Nov 17 2002

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 23 07:28 EDT 2024. Contains 372760 sequences. (Running on oeis4.)