The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A065973 Denominators in an asymptotic expansion of Ramanujan. 7

%I #38 May 18 2022 07:53:49

%S 3,135,2835,8505,12629925,492567075,1477701225,39565450299375,

%T 2255230667064375,6765692001193125,7002491221234884375,

%U 21007473663704653125,441156946937797715625,56995271759628775870171875

%N Denominators in an asymptotic expansion of Ramanujan.

%D G. E. Andrews, R. Askey and R. Roy, Special Functions, Cambridge, 1999; Problem 4, p. 616.

%D B. C. Berndt, Ramanujan's Notebooks II, Springer, 1989; p. 181, Entry 48. See also pp. 184, 193ff.

%D E. T. Copson, An Introduction to the Theory of Functions of a Complex Variable, Oxford Univ. Press, 1935; see p. 230, Problem 18.

%D S. Ramanujan, Collected Papers, edited by G. H. Hardy et al., Cambridge, 1927, pp. 323-324, Question 294.

%H Robert Israel, <a href="/A065973/b065973.txt">Table of n, a(n) for n = 0..320</a> (0 .. 126 from G. C. Greubel and D. Turner)

%H J. C. W. Marsaglia, <a href="https://doi.org/10.1080/00949658608810899">The incomplete gamma function and Ramanujan's rational approximation to exp(x)</a>, J. Statist. Comput. Simulation, 24 (1986), 163-168.

%H Cormac O'Sullivan, <a href="https://arxiv.org/abs/2205.08504">Ramanujan's approximation to the exponential function and generalizations</a>, arXiv:2205.08504 [math.NT], 2022.

%F Define t_n by Sum_{k=0..n-1} n^k/k! + t_n*n^n/n! = exp(n)/2; then t_n ~ 1/3 + 4/(135*n) - 8/(2835*n^2) + ...

%F Integral_{0..infinity} exp(-x)*(1+x/n)^n dx = exp(n)*Gamma(n+1)/(2*n^n) + 2/3 - 4/(135*n) + 8/(2835*n^2) + 16/(8505*n^3) - 8992/(12629925*n^4) + ...

%e -2/3, 4/135, -8/2835, -16/8505, 8992/12629925, 334144/492567075, -698752/1477701225, ...

%p # Maple program from _N. J. A. Sloane_, Jun 23 2011, based on J. Marsaglia's 1986 paper:

%p a[1]:=1;

%p M:=20;

%p for n from 2 to M do

%p t1:=a[n-1]/(n+1)-add(a[k]*a[n+1-k],k=2..floor(n/2));

%p if n mod 2 = 1 then t1:=t1-a[(n+1)/2]^2/2; fi;

%p a[n]:=t1;

%p od:

%p s1:=[seq(a[n],n=1..M)]: # This gives A005447/A005446

%p s2:=[seq(-2^(n+1)*(n+1)!*a[2*n+2],n=0..(M-2)/2)]: # This gives A090804/A065973

%p map(denom,s2);

%t Denominator[Table[2^n*(3*n + 2)! * Sum[ Sum[ (-1)^(j + 1)*2^i*StirlingS2[2*n + i + j + 1, j]/((2*n + i + j + 1)!*(2*n - i + 1)!*(i - j)!*(n + i + 1)), {j, 1, i}], {i, 1, 2*n+1}], {n, 0, 20}]] (* _Vaclav Kotesovec_, Nov 20 2015 *)

%o (PARI) a(n)=local(A,m); if(n<0,0,n++; A=vector(m=2*n,k,1); for(k=2,m,A[k]=(A[k-1]-sum(i=2,k-1,i*A[i]*A[k+1-i]))/(k+1)); denominator(A[m]*2^n*n!)) /* _Michael Somos_, Jun 09 2004 */

%Y Cf. A260306 (numerators), A090804, A005446, A005447.

%K nonn,frac

%O 0,1

%A _N. J. A. Sloane_, Dec 09 2001

%E Maple program edited by _Robert Israel_, Dec 15 2015

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 17 16:19 EDT 2024. Contains 372603 sequences. (Running on oeis4.)