Series for sqrt(2)*Pi 1) sqrt(2)*Pi = 4 + 8*Sum_{n >= 0} (-1)^n/(16*n^2 + 32*n + 15). See A141759. - - - - - - - - - - - - - - - - - - - - - - - - 2) In the following the Eisenstein summation convention is assumed: that is, Sum_{n = -oo..oo} means Limit_{N -> oo} Sum_{n = -N..N}: sqrt(2)*Pi = 4*Sum_{n = -oo..oo} (-1)^n/(4*n + 1). More generally, it appears that for k >= 0, k not of the form 4*m + 1, sqrt(2)*Pi = -sign(cos(Pi*(k - 3)/4)) * 4*(2^floor(k/2))*k! * Sum_{n = -oo..oo} (-1)^n/((4*n + 1)*(4*n + 3)*...*(4*n + 2*k + 1)) (verified up to k = 50). - - - - - - - - - - - - - - - - - - - - - - - - 3) The following series representations for sqrt(2)*Pi appear to be the first two entries in an infinite sequence of series representations: sqrt(2)*Pi = (2^4)*Sum_{n >= 0} (-1)^n * (2*n + 1)/((4*n + 1)*(4*n + 3)); sqrt(2)*Pi = 512/105 - (2^6)*4!*Sum_{n >= 0} (-1)^n * (2*n + 3)/((4*n + 1)*(4*n + 3)*...*(4*n + 11)). Conjecture 1: for k >= 0, sqrt(2)*Pi = A(k) + (-1)^k *2^(2*k+2)*(4*k)!*Sum_{n >= 0} (-1)^n * (2*n + 2*k + 1)/((4*n + 1)*(4*n + 3)*...*(4*n + 8*k + 3)), where A(k) is a rational approximation to sqrt(2)*Pi. - - - - - - - - - - - - - - - - - - - - - - - - 4) The following series representations for sqrt(2)*Pi appear to be the first two entries in an infinite sequence of series representations: sqrt(2)*Pi = 4 + (2^3)*Sum_{n >= 0} (-1)^n * (4*n + 1)/((4*n + 1)*(4*n + 3)*(4*n + 5)). sqrt(2)*Pi = 1408/315 - (2^5)*5!*Sum_{n >= 0} (-1)^n * (4*n + 1)/((4*n + 1)*(4*n + 3)*...*(4*n + 13)). Conjecture 2: for k >= 0, sqrt(2)*Pi = B(k) + (-1)^k * 2^(2*k+3)*(4*k + 1)!*Sum_{n >= 0} (-1)^n * (4*n + 1)/((4*n + 1)*(4*n + 3)*...*(4*n + 8*k + 5)), where B(k) is a rational approximation to sqrt(2)*Pi. - - - - - - - - - - - - - - - - - - - - - - - - 5) The following series representations for sqrt(2)*Pi appear to be the first two entries in an infinite sequence of series representations: sqrt(2)*Pi = 16/3 - (2^4)*3!*Sum_{n >= 0} (-1)^n/((4*n + 1)*(4*n + 3)*(4*n + 5)*(4*n + 7)). sqrt(2)*Pi = 14848/3465 + (2^6)*7!*Sum_{n >= 0} (-1)^n/((4*n + 1)*(4*n + 3)*...*(4*n + 15)). Conjecture 3: for k >= 0, sqrt(2)*Pi = C(k) - (-1)^k * 2^(2*k+4)*(4k + 3)!*Sum_{n >= 0} (-1)^n/((4*n + 1)*(4*n + 3)*...*(4*n + 8*k + 7)), where C(k) is a rational approximation to sqrt(2)*Pi. - - - - - - - - - - - - - - - - - - - - - - - - 6) Conjecture 4: for k >= 1, sqrt(2)*Pi = D(k) - (-1)^k * E(k)*Sum_{n >= 0} (-1)^n * P(n,k)/((4*n + 1)*(4*n + 3)*...*(4*n + 8*k + 1 )), where P(n,k) = 8*(8*k + 1)*n^2 + (64*k^2 + 48*k + 2)*n, D(k) is a rational approximation to sqrt(2)*Pi and E(k) = 2^(2*k+4)*(4*k)!/(8*k*(32*k^2 + 1)). - - - - - - - - - - - - - - - - - - - - - - - - Peter Bala , Nov 05 2023