The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A059064 Card-matching numbers (Dinner-Diner matching numbers). 0
1, 1, 0, 1, 1, 0, 4, 0, 1, 1, 0, 9, 0, 9, 0, 1, 1, 0, 16, 0, 36, 0, 16, 0, 1, 1, 0, 25, 0, 100, 0, 100, 0, 25, 0, 1, 1, 0, 36, 0, 225, 0, 400, 0, 225, 0, 36, 0, 1, 1, 0, 49, 0, 441, 0, 1225, 0, 1225, 0, 441, 0, 49, 0, 1, 1, 0, 64, 0, 784, 0, 3136, 0, 4900, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,7
COMMENTS
This is a triangle of card matching numbers. A deck has 2 kinds of cards, n of each kind. The deck is shuffled and dealt in to 2 hands each with n cards. A match occurs for every card in the j-th hand of kind j. Triangle T(n,k) is the number of ways of achieving exactly k matches (k=0..2n). An odd number of matches is impossible, so alternating elements in each row of the triangle are zero. The probability of exactly k matches is T(n,k)/((2n)!/n!^2).
Rows have lengths 1,3,5,7,...
Analogous to A008290 - Zerinvary Lajos, Jun 22 2005
REFERENCES
F. N. David and D. E. Barton, Combinatorial Chance, Hafner, NY, 1962, Ch. 7 and Ch. 12.
J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, pp. 174-178.
R. P. Stanley, Enumerative Combinatorics Volume I, Cambridge University Press, 1997, p. 71.
LINKS
F. F. Knudsen and I. Skau, On the Asymptotic Solution of a Card-Matching Problem, Mathematics Magazine 69 (1996), 190-197.
B. H. Margolius, The Dinner-Diner Matching Problem, Mathematics Magazine, 76 (2003), 107-118.
S. G. Penrice, Derangements, permanents and Christmas presents, The American Mathematical Monthly 98(1991), 617-620.
FORMULA
G.f.: sum(coeff(R(x, n, k), x, j)*(t-1)^j*(n*k-j)!, j=0..n*k) where n is the number of kinds of cards (2 in this case), k is the number of cards of each kind and R(x, n, k) is the rook polynomial given by R(x, n, k)=(k!^2*sum(x^j/((k-j)!^2*j!))^n (see Stanley or Riordan). coeff(R(x, n, k), x, j) indicates the coefficient x^j of the rook polynomial.
EXAMPLE
There are 4 ways of matching exactly 2 cards when there are 2 cards of each kind and 2 kinds of card so T(2,2)=4.
MAPLE
p := (x, k)->k!^2*sum(x^j/((k-j)!^2*j!), j=0..k); R := (x, n, k)->p(x, k)^n; f := (t, n, k)->sum(coeff(R(x, n, k), x, j)*(t-1)^j*(n*k-j)!, j=0..n*k);
for n from 0 to 10 do seq(coeff(f(t, 2, n), t, m)/n!^2, m=0..2*n); od;
MATHEMATICA
p[x_, k_] := k!^2*Sum[x^j/((k-j)!^2*j!), {j, 0, k}]; r[x_, n_, k_] := p[x, k]^n; f[t_, n_, k_] := Sum[ Coefficient[r[x, n, k], x, j]*(t-1)^j*(n*k-j)!, {j, 0, n*k}]; Table[ Table[ Coefficient[f[t, 2, n], t, m]/n!^2, {m, 0, 2n}], {n, 0, 8}] // Flatten (* Jean-François Alcover, Jan 25 2013, translated from Maple *)
CROSSREFS
Cf. A008290.
Sequence in context: A061309 A263655 A329078 * A321316 A185690 A298248
KEYWORD
nonn,tabf,nice
AUTHOR
Barbara Haas Margolius (margolius(AT)math.csuohio.edu)
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 10 03:52 EDT 2024. Contains 373253 sequences. (Running on oeis4.)