The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A055790 a(n) = n*a(n-1) + (n-2)*a(n-2), a(0) = 0, a(1) = 2. 27

%I #74 May 07 2018 12:08:37

%S 0,2,4,14,64,362,2428,18806,165016,1616786,17487988,206918942,

%T 2657907184,36828901754,547499510764,8691268384262,146725287298888,

%U 2624698909845026,49592184973992676,986871395973226286,20630087248996393888,451982388752415571082

%N a(n) = n*a(n-1) + (n-2)*a(n-2), a(0) = 0, a(1) = 2.

%C With offset 1, permanent of (0,1)-matrix of size n X (n+d) with d=1 and n-1 zeros not on a line. This is a special case of Theorem 2.3 of Seok-Zun Song et al. Extremes of permanents of (0,1)-matrices, p. 201-202. - _Jaap Spies_, Dec 12 2003

%C With a(0) = 1, number of degree-(n+1) permutations p such that p(i) != i+2 for each i=1,2,...,n+1. - _Vladeta Jovovic_, Jan 03 2003

%C Equivalently number of degree-(n+1) permutations p such that p(i) != i-2 for each i=1,2,...,n+1.

%C With a(0) = 1, number of degree-(n+1) permutations without fixed points between 2 and n. - _Olivier Gérard_, Jul 29 2016

%C Also column 3 of Euler's difference table (third diagonal in example of A068106). - _Enrique Navarrete_, Oct 31 2016

%C For n>=2, the number of circular permutations (in cycle notation) on [n+2] that avoid substrings (j,j+3), 1<=j<=n-1. For example, for n=2, the 4 circular permutations in S4 that avoid the substring {14} are (1234),(1243),(1324),(1342). Note that each of these circular permutations represent 4 permutations in one-line notation (see link 2017). - _Enrique Navarrete_, Feb 15 2017

%D Brualdi, Richard A. and Ryser, Herbert J., Combinatorial Matrix Theory, Cambridge NY (1991), Chapter 7.

%H Reinhard Zumkeller, <a href="/A055790/b055790.txt">Table of n, a(n) for n = 0..250</a>

%H T. Mansour and M. Shattuck, <a href="http://dx.doi.org/10.1016/j.disc.2015.12.004">Counting permutations by the number of successors within cycles</a>, Discr. Math., 339 (2016), 1368-1376.

%H Enrique Navarrete, <a href="https://arxiv.org/abs/1610.06217">Generalized K-Shift Forbidden Substrings in Permutations</a>, arXiv:1610.06217 [math.CO], 2016.

%H Enrique Navarrete, <a href="https://arxiv.org/abs/1702.02637">Forbidden Substrings in Circular K-Successions</a>, arXiv:1702.02637 [math.CO], 2017.

%H Seok-Zun Song et al., <a href="http://dx.doi.org/10.1016/S0024-3795(03)00382-3">Extremes of permanents of (0,1)-matrices</a>, Special issue on the Combinatorial Matrix Theory Conference (Pohang, 2002). Linear Algebra Appl. 373 (2003), pp. 197-210.

%F For n > 0, a(n) = round[(n+3+1/n)*n!/e] = 2*A000153(n) = A000255(n-1)+A000255(n) = A000166(n-1)+2*A000166(n)+A000166(n+1).

%F G.f.: Q(0)*(1+x)/x - 1/x - 2, where Q(k)= 1 + (2*k + 1)*x/( (1+x) - 2*x*(1+x)*(k+1)/(2*x*(k+1) + (1+x)/Q(k+1))); (continued fraction). - _Sergei N. Gladkovskii_, May 08 2013

%F G.f.: (1+x)^2/x/Q(0) - 1/x - 2, where Q(k)= 1 - 2*k*x - x^2*(k + 1)^2/Q(k+1); (continued fraction). - _Sergei N. Gladkovskii_, May 08 2013

%F G.f.: 2*(1+x)/G(0) - 1-x, where G(k)= 1 + 1/(1 - x*(2*k+2)/(x*(2*k+1) - 1 + x*(2*k+2)/G(k+1))); (continued fraction). - _Sergei N. Gladkovskii_, May 31 2013

%F G.f.: W(0) -1, where W(k) = 1 - x*(k+2)/( x*(k+1) - 1/(1 - x*(k+1)/( x*(k+1) - 1/W(k+1) ))); (continued fraction). - _Sergei N. Gladkovskii_, Aug 26 2013

%F a(n) ~ sqrt(Pi/2)*n^n*sqrt(n)*(12*n + 37)/(6*exp(n+1)). - _Ilya Gutkovskiy_, Jul 29 2016

%F 0 = a(n)*(+a(n+1) + 3*a(n+2) - a(n+3)) + a(n+1)*(-a(n+1) + 2*a(n+2) - a(n+3)) + a(n+2)*(+a(n+2)) for n>=0. - _Michael Somos_, Nov 01 2016

%e G.f. = 2*x + 4*x^2 + 14*x^3 + 64*x^4 + 362*x^5 + 2428*x^6 + ...

%e a(3) = 3*a(2)+(3-2)*a(1) = 12+2 = 14.

%e for n=1, the 2 permutations of [2] matches:

%e 12, 21

%e for n=2, the 4 permutations of [3] without 2 as a fixed point are

%e 132, 213, 231, 312.

%e for n=3, the 14 permutations of [4] without fixed point at 2 or 3 are

%e 1324 1342 1423 2143 2314 2341 2413

%e 3124 3142 3412 3421 4123 4312 4321

%p f := proc(n) option remember; if n <= 1 then 2*n else n*f(n-1)+(n-2)*f(n-2); fi; end;

%t a[0] = 0; a[1] = 2; a[n_] := a[n] = a[n] = n*a[n - 1] + (n - 2)*a[n - 2];

%t Table[a[n], {n, 0, 21}] (* _Jean-François Alcover_, Nov 14 2017 *)

%t RecurrenceTable[{a[0]==0,a[1]==2,a[n]==n*a[n-1]+(n-2)a[n-2]},a,{n,30}] (* _Harvey P. Dale_, May 07 2018 *)

%o (Haskell)

%o a055790 n = a055790_list !! n

%o a055790_list = 0 : 2 : zipWith (+)

%o (zipWith (*) [0..] a055790_list) (zipWith (*) [2..] $ tail a055790_list)

%o -- _Reinhard Zumkeller_, Mar 05 2012

%o (PARI) a(n) = if(n==0, 0, round((n+3+1/n)*n!/exp(1))) \\ _Felix Fröhlich_, Jul 29 2016

%Y Cf. A000166 (Derangements, permutations without fixed points ).

%Y Cf. A000255 (permutations with p(i)!=i+1, same type of recurrence).

%Y Cf. A000153, A000261, A001909, A001910, A090010, A090012-A090016.

%Y Apart from first term, appears in triangles A047920 or A068106 of differences of factorials, i.e. as third term of A000142, A001563, A001564, A001565 etc.

%K nonn

%O 0,2

%A _Henry Bottomley_, Jul 13 2000

%E Comments corrected, new interpretation and examples by _Olivier Gérard_, Jul 29 2016

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 20 19:00 EDT 2024. Contains 372720 sequences. (Running on oeis4.)