The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A052542 a(n) = 2*a(n-1) + a(n-2), with a(0) = 1, a(1) = 2, a(2) = 4. 26

%I #123 Jun 21 2023 06:08:59

%S 1,2,4,10,24,58,140,338,816,1970,4756,11482,27720,66922,161564,390050,

%T 941664,2273378,5488420,13250218,31988856,77227930,186444716,

%U 450117362,1086679440,2623476242,6333631924,15290740090,36915112104,89120964298,215157040700

%N a(n) = 2*a(n-1) + a(n-2), with a(0) = 1, a(1) = 2, a(2) = 4.

%C Apart from the initial 1, this sequence is simply twice the Pell numbers, A000129. - _Antonio Alberto Olivares_, Dec 31 2003

%C Image of 1/(1-2x) under the mapping g(x) -> g(x/(1+x^2)). - _Paul Barry_, Jan 16 2005

%C The intermediate convergents to 2^(1/2) begin with 4/3, 10/7, 24/17, 58/41; essentially, numerators = A052542 and denominators = A001333. - _Clark Kimberling_, Aug 26 2008

%C a(n) is the number of generalized compositions of n+1 when there are 2*i-2 different types of i, (i=1,2,...). - _Milan Janjic_, Aug 26 2010

%C Apart from the initial 1, this is the p-INVERT transform of (1,0,1,0,1,0,...) for p(S) = 1 - 2 S. See A291219. - _Clark Kimberling_, Sep 02 2017

%C Conjecture: Apart from the initial 1, a(n) is the number of compositions of two types of n having no even parts. - _Gregory L. Simay_, Feb 17 2018

%C For n>0, a(n+1) is the length of tau^n(10) where tau is the morphism: 1 -> 101, 0 -> 1. See Song and Wu. - _Michel Marcus_, Jul 21 2020

%H Iain Fox, <a href="/A052542/b052542.txt">Table of n, a(n) for n = 0..2500</a> (first 1001 terms from Vincenzo Librandi)

%H C. Banderier and D. Merlini, <a href="http://algo.inria.fr/banderier/Papers/infjumps.ps">Lattice paths with an infinite set of jumps</a>, FPSAC02, Melbourne, 2002.

%H C. P. de Andrade, J. P. de Oliveira Santos, E. V. P. da Silva and K. C. P. Silva, <a href="http://dx.doi.org/10.4236/ojdm.2013.31006">Polynomial Generalizations and Combinatorial Interpretations for Sequences Including the Fibonacci and Pell Numbers</a>, Open Journal of Discrete Mathematics, 2013, 3, 25-32 doi:10.4236/ojdm.2013.31006. - From _N. J. A. Sloane_, Feb 20 2013

%H Massimiliano Fasi, Gian Maria Negri Porzio, <a href="http://eprints.maths.manchester.ac.uk/2709/">Determinants of Normalized Bohemian Upper Hessemberg Matrices</a>, University of Manchester (England, 2019).

%H I. M. Gessel, Ji Li, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL16/Gessel/gessel6.html">Compositions and Fibonacci identities</a>, J. Int. Seq. 16 (2013) 13.4.5.

%H INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=477">Encyclopedia of Combinatorial Structures 477</a>

%H S. Kitaev and J. Remmel, <a href="http://arxiv.org/abs/1305.6970">The 1-box pattern on pattern avoiding permutations</a>, arXiv:1305.6970 [math.CO], 2013.

%H Haocong Song and Wen Wu, <a href="https://arxiv.org/abs/2007.09940">Hankel determinants of a Sturmian sequence</a>, arXiv:2007.09940 [math.CO], 2020. See p.2 and 4.

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (2,1).

%F G.f.: (1 - x^2)/(1 - 2*x - x^2).

%F Recurrence: a(0)=1, a(2)=4, a(1)=2, a(n) + 2*a(n+1) - a(n+2) = 0;

%F a(n) = Sum_{alpha = RootOf(-1+2*x+x^2)} (1/2)*(1-alpha)*alpha^(-n-1).

%F a(n) = 2*A001333(n-1) + a(n-1), n > 1. A001333(n)/a(n) converges to sqrt(1/2). - Mario Catalani (mario.catalani(AT)unito.it), Apr 29 2003

%F Binomial transform of A094024. a(n) = 0^n + ((1 + sqrt(2))^n - (1 - sqrt(2))^n)/sqrt(2). - _Paul Barry_, Apr 22 2004

%F a(n) = Sum_{k=0..floor(n/2)} binomial(n-k-1, k)2^(n-2k). - _Paul Barry_, Jan 16 2005

%F If p[i] = 2modp(i,2) and if A is Hessenberg matrix of order n defined by A[i,j] = p[j-i+1], (i <= j), A[i,j] = -1, (i=j+1), and A[i,j] = 0 otherwise. Then, for n >= 1, a(n) = det A. - _Milan Janjic_, May 02 2010

%F G.f.: 1 + x + x^2/(2*G(0)-x) where G(k) = 1 - (k+1)/(1 - x/(x +(k+1)/G(k+1) )); (continued fraction). - _Sergei N. Gladkovskii_, Dec 07 2012

%F G.f.: G(0)*(1-x)/(2*x) + 1 - 1/x, where G(k)= 1 + 1/(1 - x*(2*k-1)/(x*(2*k+1) - 1/G(k+1))); (continued fraction). - _Sergei N. Gladkovskii_, May 26 2013

%F G.f.: 1 + G(0)*x/(1-x), where G(k) = 1 + 1/(1 - x*(2*k-1)/(x*(2*k+1) - 1/G(k+1))); (continued fraction). - _Sergei N. Gladkovskii_, Jun 19 2013

%F G.f.: 1 + (1+G(0))/(2-2*x), where G(k) = 2*x*(k+2) - 1 - x + x*(2*k-1)/G(k+1); (continued fraction). - _Sergei N. Gladkovskii_, Aug 14 2013

%F G.f.: Q(0), where Q(k) = 1 + (1+x)*x + (2*k+3)*x - x*(2*k+1 + x+1)/Q(k+1); (continued fraction). - _Sergei N. Gladkovskii_, Oct 04 2013

%F a(n) = round(sqrt(Pell(2n) + Pell(2n-1))). - _Richard R. Forberg_, Jun 22 2014

%F a(n) = 2*A000129(n) + A000007(n) - _Iain Fox_, Nov 30 2017

%F a(n) = A000129(n) - A000129(n-2). - _Gregory L. Simay_, Feb 17 2018

%p spec := [S,{S=Sequence(Prod(Union(Z,Z),Sequence(Prod(Z,Z))))},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);

%p A052542 := proc(n)

%p option remember;

%p if n <=2 then

%p 2^n;

%p else

%p 2*procname(n-1)+procname(n-2) ;

%p end if;

%p end proc: # _R. J. Mathar_, Sep 23 2016

%p A052542List := proc(m) local A, P, n; A := [1,2]; P := [1,1];

%p for n from 1 to m - 2 do P := ListTools:-PartialSums([op(A), P[-2]]);

%p A := [op(A), P[-1]] od; A end: A052542List(31); # _Peter Luschny_, Mar 26 2022

%t Join[{1}, LinearRecurrence[{2, 1}, {2, 4}, 40]] (* _Vladimir Joseph Stephan Orlovsky_, Feb 22 2012 *)

%o (PARI) Vec((1-x^2)/(1-2*x-x^2) +O(x^40)) \\ _Charles R Greathouse IV_, Nov 20 2011

%o (Haskell)

%o a052542 n = a052542_list !! n

%o a052542_list = 1 : 2 : 4 : tail (zipWith (+)

%o (map (* 2) $ tail a052542_list) a052542_list)

%o -- _Reinhard Zumkeller_, Feb 24 2015

%o (Magma) I:=[2,4]; [n le 2 select I[n] else 2*Self(n-1) +Self(n-2): n in [1..40]]; // _G. C. Greubel_, May 09 2019

%o (Sage) ((1-x^2)/(1-2*x-x^2)).series(x, 40).coefficients(x, sparse=False) # _G. C. Greubel_, May 09 2019

%o (GAP) a:=[2,4];; for n in [3..40] do a[n]:=2*a[n-1]+a[n-2]; od; a; # _G. C. Greubel_, May 09 2019

%Y Cf. A052906. Essent. first diffs. of A001333.

%K easy,nonn

%O 0,2

%A encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 19 03:19 EDT 2024. Contains 372666 sequences. (Running on oeis4.)