The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A052509 Knights-move Pascal triangle: T(n,k), n >= 0, 0 <= k <= n; T(n,0) = T(n,n) = 1, T(n,k) = T(n-1,k) + T(n-2,k-1) for k = 1,2,...,n-1, n >= 2. 25

%I #82 May 30 2022 08:24:01

%S 1,1,1,1,2,1,1,3,2,1,1,4,4,2,1,1,5,7,4,2,1,1,6,11,8,4,2,1,1,7,16,15,8,

%T 4,2,1,1,8,22,26,16,8,4,2,1,1,9,29,42,31,16,8,4,2,1,1,10,37,64,57,32,

%U 16,8,4,2,1,1,11,46,93,99,63,32,16,8,4,2,1

%N Knights-move Pascal triangle: T(n,k), n >= 0, 0 <= k <= n; T(n,0) = T(n,n) = 1, T(n,k) = T(n-1,k) + T(n-2,k-1) for k = 1,2,...,n-1, n >= 2.

%C Also square array T(n,k) (n >= 0, k >= 0) read by antidiagonals: T(n,k) = Sum_{i=0..k} binomial(n,i).

%C As a number triangle read by rows, this is T(n,k) = Sum_{i=n-2*k..n-k} binomial(n-k,i), with T(n,k) = T(n-1,k) + T(n-2,k-1). Row sums are A000071(n+2). Diagonal sums are A023435(n+1). It is the reverse of the Whitney triangle A004070. - _Paul Barry_, Sep 04 2005

%C Also, twice number of orthants intersected by a generic k-dimensional subspace of R^n [Naiman and Scheinerman, 2017]. - _N. J. A. Sloane_, Mar 03 2018

%H Reinhard Zumkeller, <a href="/A052509/b052509.txt">Rows n = 0..150 of triangle, flattened</a>

%H Clark Kimberling, <a href="https://www.fq.math.ca/Scanned/40-4/kimberling.pdf">Path-counting and Fibonacci numbers</a>, Fib. Quart. 40 (4) (2002) 328-338, Example 1C.

%H Daniel Q. Naiman and Edward R. Scheinerman, <a href="https://arxiv.org/abs/1709.07446">Arbitrage and Geometry</a>, arXiv:1709.07446 [q-fin.MF], 2017 [Contains the square array multiplied by 2].

%H Richard L. Ollerton and Anthony G. Shannon, <a href="http://www.fq.math.ca/Scanned/36-2/ollerton.pdf">Some properties of generalized Pascal squares and triangles</a>, Fib. Q., 36 (1998), 98-109. See Tables 5 and 14.

%H D. J. Price, <a href="http://www.jstor.org/stable/3609091">Some unusual series occurring in n-dimensional geometry</a>, Math. Gaz., 30 (1946), 149-150.

%H <a href="/index/Pas#Pascal">Index entries for triangles and arrays related to Pascal's triangle</a>

%F T(n, k) = Sum_{m=0..n} binomial(n-k, k-m). - _Wouter Meeussen_, Oct 03 2002

%F From _Werner Schulte_, Feb 15 2018: (Start)

%F Referring to the square array T(i,j):

%F G.f. of row n: Sum_{k>=0} T(n,k) * x^k = (1+x)^n / (1-x).

%F G.f. of T(i,j): Sum_{k>=0, n>=0} T(n,k) * x^k * y^n = 1 / ((1-x)*(1-y-x*y)).

%F Let a_i(n) be multiplicative with a_i(p^e) = T(i, e), p prime and e >= 0, then Sum_{n>0} a_i(n)/n^s = (zeta(s))^(i+1) / (zeta(2*s))^i for i >= 0.

%F (End)

%F T(n, k) = hypergeom([-k, -n + k], [-k], -1). - _Peter Luschny_, Nov 28 2021

%F From _Jianing Song_, May 30 2022: (Start)

%F Referring to the triangle, G.f.: Sum_{n>=0, 0<=k<=n} T(n,k) * x^n * y^k = 1 / ((1-x*y)*(1-x-x^2*y)).

%F T(n,k) = 2^(n-k) for ceiling(n/2) <= k <= n. (End)

%e Triangle begins:

%e [0] 1;

%e [1] 1, 1;

%e [2] 1, 2, 1;

%e [3] 1, 3, 2, 1;

%e [4] 1, 4, 4, 2, 1;

%e [5] 1, 5, 7, 4, 2, 1;

%e [6] 1, 6, 11, 8, 4, 2, 1;

%e [7] 1, 7, 16, 15, 8, 4, 2, 1;

%e [8] 1, 8, 22, 26, 16, 8, 4, 2, 1;

%e [9] 1, 9, 29, 42, 31, 16, 8, 4, 2, 1;

%e As a square array, this begins:

%e 1 1 1 1 1 1 ...

%e 1 2 2 2 2 2 ...

%e 1 3 4 4 4 4 ...

%e 1 4 7 8 8 8 ...

%e 1 5 11 15 16 ...

%e 1 6 16 26 31 32 ...

%p a := proc(n::nonnegint, k::nonnegint) option remember: if k=0 then RETURN(1) fi: if k=n then RETURN(1) fi: a(n-1,k)+a(n-2,k-1) end: for n from 0 to 11 do for k from 0 to n do printf(`%d,`,a(n,k)) od: od: # _James A. Sellers_, Mar 17 2000

%p with(combinat): for s from 0 to 11 do for n from s to 0 by -1 do if n=0 or s-n=0 then printf(`%d,`,1) else printf(`%d,`,sum(binomial(n, i), i=0..s-n)) fi; od: od: # _James A. Sellers_, Mar 17 2000

%t Table[Sum[Binomial[n-k, k-m], {m, 0, n}], {n, 0, 10}, {k, 0, n}]

%t T[n_, k_] := Hypergeometric2F1[-k, -n + k, -k, -1];

%t Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* _Peter Luschny_, Nov 28 2021 *)

%o (PARI) T(n,k)=sum(m=0,n,binomial(n-k,k-m));

%o for(n=0,10,for(k=0,n,print1(T(n,k),", "););print();); /* show triangle */

%o (Haskell)

%o a052509 n k = a052509_tabl !! n !! k

%o a052509_row n = a052509_tabl !! n

%o a052509_tabl = [1] : [1,1] : f [1] [1,1] where

%o f row' row = rs : f row rs where

%o rs = zipWith (+) ([0] ++ row' ++ [1]) (row ++ [0])

%o -- _Reinhard Zumkeller_, Nov 22 2012

%o (GAP) A052509:=Flat(List([0..100],n->List([0..n],k->Sum([0..n],m->Binomial(n-k,k-m))))); # _Muniru A Asiru_, Sat Feb 17 2018

%o (Magma) [[(&+[Binomial(n-k, k-j): j in [0..n]]): k in [0..n]]: n in [0..10]]; // _G. C. Greubel_, May 13 2019

%o (Sage) [[sum(binomial(n-k, k-j) for j in (0..n)) for k in (0..n)] for n in (0..10)] # _G. C. Greubel_, May 13 2019

%Y Cf. A054123, A054124, A007318, A008949.

%Y Row sums A000071; Diagonal sums A023435; Mirror A004070.

%Y Columns give A000027, A000124, A000125, A000127, A006261, ...

%Y Cf. A052509, A054123, A054124, A007318, A008949, A052553.

%Y Partial sums across rows of (extended) Pascal's triangle A052553.

%K nonn,tabl,easy,nice

%O 0,5

%A _N. J. A. Sloane_, Mar 17 2000

%E More terms from _James A. Sellers_, Mar 17 2000

%E Entry formed by merging two earlier entries. - _N. J. A. Sloane_, Jun 17 2007

%E Edited by _Johannes W. Meijer_, Jul 24 2011

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 1 05:22 EDT 2024. Contains 373010 sequences. (Running on oeis4.)