The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A052307 Triangle read by rows: T(n,k) = number of bracelets (reversible necklaces) with n beads, k of which are black and n - k are white. 27

%I #122 Mar 10 2021 17:28:51

%S 1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,2,2,1,1,1,1,3,3,3,1,1,1,1,3,4,4,3,

%T 1,1,1,1,4,5,8,5,4,1,1,1,1,4,7,10,10,7,4,1,1,1,1,5,8,16,16,16,8,5,1,1,

%U 1,1,5,10,20,26,26,20,10,5,1,1,1,1,6,12,29,38,50,38,29,12,6,1,1,1,1,6,14,35,57,76,76,57,35,14,6,1,1

%N Triangle read by rows: T(n,k) = number of bracelets (reversible necklaces) with n beads, k of which are black and n - k are white.

%C Equivalently, T(n,k) is the number of orbits of k-element subsets of the vertices of a regular n-gon under the usual action of the dihedral group D_n, or under the action of Euclidean plane isometries. Note that each row of the table is symmetric and unimodal. - _Austin Shapiro_, Apr 20 2009

%C Also, the number of k-chords in n-tone equal temperament, up to (musical) transposition and inversion. Example: there are 29 tetrachords, 38 pentachords, 50 hexachords in the familiar 12-tone equal temperament. Called "Forte set-classes," after Allen Forte who first catalogued them. - _Jon Wild_, May 21 2004

%D Martin Gardner, "New Mathematical Diversions from Scientific American" (Simon and Schuster, New York, 1966), pages 245-246.

%D N. Zagaglia Salvi, Ordered partitions and colourings of cycles and necklaces, Bull. Inst. Combin. Appl., 27 (1999), 37-40.

%H Washington Bomfim, <a href="/A052307/b052307.txt">Rows n = 0..130, flattened</a>

%H N. J. Fine, <a href="http://projecteuclid.org/euclid.ijm/1255381350">Classes of periodic sequences</a>, Illinois J. Math., 2 (1958), 285-302.

%H E. N. Gilbert and J. Riordan, <a href="http://projecteuclid.org/euclid.ijm/1255631587">Symmetry types of periodic sequences</a>, Illinois J. Math., 5 (1961), 657-665.

%H G. Gori, S. Paganelli, A. Sharma, P. Sodano, and A. Trombettoni, <a href="http://arxiv.org/abs/1405.3616">Bell-Paired States Inducing Volume Law for Entanglement Entropy in Fermionic Lattices</a>, arXiv:1405.3616 [cond-mat.stat-mech], 2014. See Section V.

%H H. Gupta, <a href="https://web.archive.org/web/20200806162943/https://www.insa.nic.in/writereaddata/UpLoadedFiles/IJPAM/20005a66_964.pdf">Enumeration of incongruent cyclic k-gons</a>, Indian J. Pure and Appl. Math., 10(8) (1979), 964-999.

%H S. Karim, J. Sawada, Z. Alamgirz, and S. M. Husnine, <a href="https://doi.org/10.1016/j.tcs.2012.11.024">Generating bracelets with fixed content</a>, Theoretical Computer Science, 475 (2013), 103-112.

%H John P. McSorley and Alan H. Schoen, <a href="http://dx.doi.org/10.1016/j.disc.2012.08.021">Rhombic tilings of (n, k)-ovals, (n, k, lambda)-cyclic difference sets, and related topics</a>, Discrete Math., 313 (2013), 129-154. - From _N. J. A. Sloane_, Nov 26 2012

%H A. L. Patterson, <a href="http://dx.doi.org/10.1103/PhysRev.65.195">Ambiguities in the X-Ray Analysis of Crystal Structures</a>, Phys. Rev. 65 (1944), 195 - 201 (see Table I). [From _N. J. A. Sloane_, Mar 14 2009]

%H Richard H. Reis, <a href="https://web.archive.org/web/20200803213425/https://www.insa.nic.in/writereaddata/UpLoadedFiles/IJPAM/20005a66_1000.pdf">A formula for C(T) in Gupta's paper</a>, Indian J. Pure and Appl. Math., 10(8) (1979), 1000-1001.

%H V. Shevelev, <a href="http://www.math.bgu.ac.il/~shevelev/Shevelev_Neclaces.pdf">Necklaces and convex k-gons</a>, Indian J. Pure and Appl. Math., 35(5) (2004), 629-638.

%H V. Shevelev, <a href="https://web.archive.org/web/20200722171019/http://www.insa.nic.in/writereaddata/UpLoadedFiles/IJPAM/2000c4e8_629.pdf">Necklaces and convex k-gons</a>, Indian J. Pure and Appl. Math., 35(5) (2004), 629-638.

%H <a href="/index/Br#bracelets">Index entries for sequences related to bracelets</a>

%F T(0,0) = 1. If n > 0, T(n,k) = binomial(floor(n/2) - (k mod 2) * (1 - (n mod 2)), floor(k/2)) / 2 + Sum_{d|n, d|k} (phi(d)*binomial(n/d, k/d)) / (2*n). - _Washington Bomfim_, Jun 30 2012 [edited by _Petros Hadjicostas_, May 29 2019]

%F From _Freddy Barrera_, Apr 21 2019: (Start)

%F T(n,k) = (1/2) * (A119963(n,k) + A047996(n,k)).

%F T(n,k) = T(n, n-k) for each k < n (Theorem 2 of H. Gupta). (End)

%F G.f. for column k >= 1: (x^k/2) * ((1/k) * Sum_{m|k} phi(m)/(1 - x^m)^(k/m) + (1 + x)/(1 - x^2)^floor((k/2) + 1)). (This formula is due to Herbert Kociemba.) - _Petros Hadjicostas_, May 25 2019

%F Bivariate o.g.f.: Sum_{n,k >= 0} T(n, k)*x^n*y^k = (1/2) * ((x + 1) * (x*y + 1) / (1 - x^2 * (y^2 + 1)) + 1 - Sum_{d >= 1} (phi(d)/d) * log(1 - x^d * (1 + y^d))). - _Petros Hadjicostas_, Jun 13 2019

%e Triangle T(n,k) (with rows n >= 0 and columns k = 0..n) begins:

%e 1;

%e 1, 1;

%e 1, 1, 1;

%e 1, 1, 1, 1;

%e 1, 1, 2, 1, 1;

%e 1, 1, 2, 2, 1, 1;

%e 1, 1, 3, 3, 3, 1, 1;

%e 1, 1, 3, 4, 4, 3, 1, 1;

%e 1, 1, 4, 5, 8, 5, 4, 1, 1;

%e 1, 1, 4, 7, 10, 10, 7, 4, 1, 1;

%e 1, 1, 5, 8, 16, 16, 16, 8, 5, 1, 1;

%e 1, 1, 5, 10, 20, 26, 26, 20, 10, 5, 1, 1;

%e 1, 1, 6, 12, 29, 38, 50, 38, 29, 12, 6, 1, 1;

%e ...

%p A052307 := proc(n,k)

%p local hk,a,d;

%p if k = 0 then

%p return 1 ;

%p end if;

%p hk := k mod 2 ;

%p a := 0 ;

%p for d in numtheory[divisors](igcd(k,n)) do

%p a := a+ numtheory[phi](d)*binomial(n/d-1,k/d-1) ;

%p end do:

%p %/k + binomial(floor((n-hk)/2),floor(k/2)) ;

%p %/2 ;

%p end proc: # _R. J. Mathar_, Sep 04 2011

%t Table[If[m*n===0,1,1/2*If[EvenQ[n], If[EvenQ[m], Binomial[n/2, m/2], Binomial[(n-2)/2, (m-1)/2 ]], If[EvenQ[m], Binomial[(n-1)/2, m/2], Binomial[(n-1)/2, (m-1)/2]]] + 1/2*Fold[ #1 +(EulerPhi[ #2]*Binomial[n/#2, m/#2])/n &, 0, Intersection[Divisors[n], Divisors[m]]]], {n,0,12}, {m,0,n}] (* _Wouter Meeussen_, Aug 05 2002, Jan 19 2009 *)

%o (PARI)

%o B(n,k)={ if(n==0, return(1)); GCD = gcd(n, k); S = 0;

%o for(d = 1, GCD, if((k%d==0)&&(n%d==0), S+=eulerphi(d)*binomial(n/d,k/d)));

%o return (binomial(floor(n/2)- k%2*(1-n%2), floor(k/2))/2 + S/(2*n)); }

%o n=0;k=0; for(L=0, 8645, print(L, " ", B(n,k)); k++; if(k>n, k=0; n++))

%o /* _Washington Bomfim_, Jun 30 2012 */

%o (Python)

%o from sympy import binomial as C, totient, divisors, gcd

%o def T(n, k): return 1 if n==0 else C((n//2) - k%2 * (1 - n%2), (k//2))/2 + sum(totient(d)*C(n//d, k//d) for d in divisors(gcd(n, k)))/(2*n)

%o for n in range(11): print([T(n, k) for k in range(n + 1)]) # _Indranil Ghosh_, Apr 23 2017

%Y Row sums: A000029. Columns 0-12: A000012, A000012, A008619, A001399, A005232, A032279, A005513, A032280, A005514, A032281, A005515, A032282, A005516.

%Y Cf. A047996, A051168, A052308, A052309, A052310.

%K nonn,tabl,nice

%O 0,13

%A _Christian G. Bower_, Nov 15 1999

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 13 03:50 EDT 2024. Contains 372497 sequences. (Running on oeis4.)