The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A049604 Array T read by diagonals: T(i,j)=least number of knight's moves on unbounded chessboard from corner (0,0) to square (i,j). 9
0, 3, 3, 2, 4, 2, 3, 1, 1, 3, 2, 2, 4, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 2, 2, 2, 4, 4, 5, 3, 3, 3, 3, 3, 3, 5, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 3, 3, 3, 3, 5, 5, 5, 6, 6, 4, 4, 4, 4, 4, 4, 4, 6, 6, 7, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 7, 6, 6, 6, 6, 4, 4, 4, 4, 4, 6, 6, 6, 6, 7, 7, 7, 5, 5, 5, 5, 5, 5, 5, 5, 7, 7, 7 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,2
LINKS
FORMULA
From Yu-Sheng Chang, Jun 10 2020: (Start)
We separate the generating function, F(z,v), into four parts: Left, Middle, Right and Remaining.
First, changing some entries and these lost terms are the Remaining part, X(z,v): T(1,0)=T(0,1)=1, T(2,2)=0, T(3,4)=T(4,3)=0, so X(z,v) = 2*(1+v)*z+4*v*z^2+4*v^2*z^4+3*(1+v)*v^2*z^5.
Second, the left and right parts, L(z,v) and R(z,v), collect coefficients like:
0
1 1
2 - 2
3 1 1 3
2 2 - 2 2
3 3 - - 3 3
4 4 2 - 2 4 4
5 3 3 - - 3 3 5
4 4 4 - - - 4 4 4
5 5 5 3 - - 3 5 5 5
6 6 4 4 - - - 4 4 6 6
7 5 5 5 - - - - 5 5 5 7
6 6 6 6 4 - - - 4 6 6 6 6
7 7 7 5 5 - - - - 5 5 7 7 7
Then R(z,v) = Sum_{j>=0} ((v^2*z^3)^j*(Sum_{i>=0} (((2*i+j)*(v*z)^0+(2*i+j+1)*(v*z)^1+(2*i+j+2)*(v*z)^2+(2*i+j+3)*(v*z)^3)*(v*z)^(4*i)))) = v*z*(1+z*v+z^2*v+z^2*v^2-z^3*v^2-z^3*v^3-z^4*v^3-z^5*v^4)/((1+z*v)*(1+z^2*v^2)*(1-z*v)^2*(1-z^3*v^2)^2) and L(z,v) = R(v*z,1/v) since it's symmetric.
Third, the middle part, M(z,v) collects:
-
- -
- - -
- - - -
- - - - -
- - - - - -
- - - 2 - - -
- - - 3 3 - - -
- - - 4 4 4 - - -
- - - - 3 3 - - - -
- - - - 4 4 4 - - - -
- - - - 5 5 5 5 - - - -
- - - - - 4 4 4 - - - - -
- - - - - 5 5 5 5 - - - - -
- - - - - 6 6 6 6 6 - - - - -
Then M(z,v) = Sum_{i=>0} (v^3*z^6*(v*z^3)^i*((i+2)*(1-v^(i+1))/(1-v)+(i+3)*(1-v^(i+2))*z/(1-v)+(i+4)*(1-v^(i+3))*z^2/(1-v))) = v^3*z^6*(2+3*z+3*z*v+4*z^2+4*z^2*v+4*z^2*v^2-z^3*v-z^3*v^2-2*z^4*v-8*z^4*v^2-3*z^5*v-2*z^4*v^3-11*z^5*v^2-11*z^5*v^3-3*z^5*v^4+4*z^7*v^3+4*z^7*v^4+6*z^8*v^3+10*z^8*v^4+6*z^8*v^5-2*z^10*v^5-3*z^11*v^5-3*z^11*v^6)/((1-z^3*v^2)^2*(1-z^3*v)^2).
Finally, F(z,v) = L(z,v) + M(z,v) + R(z,v) + X(z,v), so we have:
O.g.f.: F(z,v) = (2*v^10*z^20-2*v^9*(v+1)*z^19+4*v^9*z^18-2*v^8*(v+1)*z^17-2*v^6*(v^4-v^2+1)*z^16+2*v^5*(v+1)*(v^4-v^2+1)*z^15-2*v^5*(2*v^4-v^2+2)*z^14+v^4*(v+1)*(2*v^4+2*v^3-v^2+2*v+2)*z^13-v^4*(2*v^4+v^3-4*v^2+v+2)*z^12+v^3*(v+1)*(2*v^4-v^3-3*v^2-v+2)*z^11-v^3*(3*v^2-5*v+3)*(v+1)^2*z^10-v*(v+1)*(2*v^6+3*v^3+2)*z^9+v*(2*v^6-v^5+2*v^4+4*v^3+2*v^2-v+2)*z^8+v*(v+1)*(v^4+2*v^3-4*v^2+2*v+1)*z^7+(2*v^6+v^5+4*v^3+v+2)*z^6-(v+1)*(2*v^4-2*v^3+v^2-2*v+2)*z^5-(v^4+3*v^3+3*v+1)*z^4+(v+1)*(v^2-3*v+1)*z^3-(v+1)^2*z^2+3*(v+1)*z)/(v*z+1)/(z+1)/(v^2*z^2+1)/(z^2+1)/(v*z-1)^2/(z-1)^2/(v^2*z^3-1)/(v*z^3-1).
(End)
EXAMPLE
Array T begins:
0, 3, 2, 3, 2, 3, 4, 5, 4, 5, 6, ...
3, 4, 1, 2, 3, 4, 3, 4, 5, 6, 5, ...
2, 1, 4, 3, 2, 3, 4, 5, 4, 5, 6, ...
3, 2, 3, 2, 3, 4, 3, 4, 5, 6, 5, ...
2, 3, 2, 3, 4, 3, 4, 5, 4, 5, 6, ...
3, 4, 3, 4, 3, 4, 5, 4, 5, 6, 5, ...
4, 3, 4, 3, 4, 5, 4, 5, 6, 5, 6, ...
5, 4, 5, 4, 5, 4, 5, 6, 5, 6, 7, ...
4, 5, 4, 5, 4, 5, 6, 5, 6, 7, 6, ...
5, 6, 5, 6, 5, 6, 5, 6, 7, 6, 7, ...
6, 5, 6, 5, 6, 5, 6, 7, 6, 7, 8, ...
MAPLE
A := proc(n, k) option remember;
local x;
if k = 0 then
if n = 1 then
3
else
2*floor(n/4)+ `mod`(n, 4)
end if;
elif k = 1 then
x := n - k + 1;
if x = 1 then
3
elif x = 2 then
4
else
2*floor((n+1)*(1/4))-1 + `mod`(n+1, 4)
end if ;
elif n < 2*k then
A(n, n - k)
else ## n >= 2*k and n >= k >= 2
1 + min(A(n-3, k-2), A(n-3, k-1))
end if;
end proc: # Yu-Sheng Chang, Jun 10 2020
MATHEMATICA
A[n_ /; n >= 0, k_ /; k >= 0] := A[n, k] = Module[{x}, Which[
k == 0, If[n == 1, 3, 2*Floor[n/4] + Mod[n, 4]],
k == 1, x = n - k + 1;
Which[x == 1, 3, x == 2, 4,
True, 2*Floor[(n + 1)*(1/4)] - 1 + Mod[n + 1, 4]], n < 2*k, A[n, n - k],
True, 1 + Min[A[n - 3, k - 2], A[n - 3, k - 1]]]];
A[_, _] = 0;
T[n_, k_] := A[n + k, k];
Table[T[n - k, k], {n, 0, 13}, {k, 0, n}] // Flatten
(* Jean-François Alcover, May 20 2022, after Yu-Sheng Chang *)
CROSSREFS
Sequence in context: A350833 A064655 A207335 * A247509 A106686 A106702
KEYWORD
nonn,tabl,look
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 29 14:37 EDT 2024. Contains 372952 sequences. (Running on oeis4.)