The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A048994 Triangle of Stirling numbers of first kind, s(n,k), n >= 0, 0 <= k <= n. 208

%I #122 May 11 2024 21:21:56

%S 1,0,1,0,-1,1,0,2,-3,1,0,-6,11,-6,1,0,24,-50,35,-10,1,0,-120,274,-225,

%T 85,-15,1,0,720,-1764,1624,-735,175,-21,1,0,-5040,13068,-13132,6769,

%U -1960,322,-28,1,0,40320,-109584,118124,-67284,22449,-4536,546,-36,1,0,-362880,1026576,-1172700,723680,-269325,63273,-9450,870,-45,1

%N Triangle of Stirling numbers of first kind, s(n,k), n >= 0, 0 <= k <= n.

%C The unsigned numbers are also called Stirling cycle numbers: |s(n,k)| = number of permutations of n objects with exactly k cycles.

%C Mirror image of the triangle A054654. - _Philippe Deléham_, Dec 30 2006

%C Also the triangle gives coefficients T(n,k) of x^k in the expansion of C(x,n) = (a(k)*x^k)/n!. - _Mokhtar Mohamed_, Dec 04 2012

%C From _Wolfdieter Lang_, Nov 14 2018: (Start)

%C This is the Sheffer triangle of Jabotinsky type (1, log(1 + x)). See the e.g.f. of the triangle below.

%C This is the inverse Sheffer triangle of the Stirling2 Sheffer triangle A008275.

%C The a-sequence of this Sheffer triangle (see a W. Lang link in A006232)

%C is from the e.g.f. A(x) = x/(exp(x) -1) a(n) = Bernoulli(n) = A027641(n)/A027642(n), for n >= 0. The z-sequence vanishes.

%C The Boas-Buck sequence for the recurrences of columns has o.g.f. B(x) = Sum_{n>=0} b(n)*x^n = 1/((1 + x)*log(1 + x)) - 1/x. b(n) = (-1)^(n+1)*A002208(n+1)/A002209(n+1), b = {-1/2, 5/12, -3/8, 251/720, -95/288, 19087/60480,...}. For the Boas-Buck recurrence of Riordan and Sheffer triangles see the Aug 10 2017 remark in A046521, adapted to the Sheffer case, also for two references. See the recurrence and example below. - _Wolfdieter Lang_, Nov 14 2018

%C Let G(n,m,k) be the number of simple labeled graphs on [n] with m edges and k components. Then T(n,k) = Sum (-1)^m*G(n,m,k). See the Read link below. Equivalently, T(n,k) = Sum mu(0,p) where the sum is over all set partitions p of [n] containing k blocks and mu is the Moebius function in the incidence algebra associated to the set partition lattice on [n]. - _Geoffrey Critzer_, May 11 2024

%D M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 833.

%D L. Comtet, Advanced Combinatorics, Reidel, 1974; Chapter V, also p. 310.

%D J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, NY, 1996, p. 93.

%D F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 226.

%D R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 245.

%D J. Riordan, An Introduction to Combinatorial Analysis, p. 48.

%H T. D. Noe, <a href="/A048994/b048994.txt">Rows n=0..100 of triangle, flattened</a>

%H M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].

%H Paul Barry, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL17/Barry1/barry263.html">Generalized Stirling Numbers, Exponential Riordan Arrays, and Toda Chain Equations</a>, Journal of Integer Sequences, 17 (2014), #14.2.3.

%H R. M. Dickau, <a href="http://mathforum.org/advanced/robertd/stirling1.html">Stirling numbers of the first kind</a>. [Illustrates the unsigned Stirling cycle numbers A132393.]

%H Askar Dzhumadil'daev and Damir Yeliussizov, <a href="http://www.combinatorics.org/ojs/index.php/eljc/article/view/v22i4p10">Walks, partitions, and normal ordering</a>, Electronic Journal of Combinatorics, 22(4) (2015), #P4.10.

%H Bill Gosper, <a href="/A008275/a008275.png">Colored illustrations of triangle of Stirling numbers of first kind read mod 2, 3, 4, 5, 6, 7</a>.

%H Gergő Nemes, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL14/Nemes/nemes4.html">An Asymptotic Expansion for the Bernoulli Numbers of the Second Kind</a>, J. Int. Seq. 14 (2011), #11.4.8.

%H A. Hennessy and Paul Barry, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL14/Barry6/barry161.html">Generalized Stirling Numbers, Exponential Riordan Arrays, and Orthogonal Polynomials</a>, J. Int. Seq. 14 (2011), #11.8.2 (A-number typo A048894).

%H NIST Digital Library of Mathematical Functions, <a href="http://dlmf.nist.gov/26.8">Stirling Numbers</a>

%H Ken Ono, Larry Rolen, and Florian Sprung, <a href="http://arxiv.org/abs/1602.00752">Zeta-Polynomials for modular form periods</a>, p. 6, arXiv:1602.00752 [math.NT], 2016.

%H Ricardo A. Podestá, <a href="http://arxiv.org/abs/1603.09156">New identities for binary Krawtchouk polynomials, binomial coefficients and Catalan numbers</a>, arXiv preprint arXiv:1603.09156 [math.CO], 2016.

%H Ronald Read, <a href="https://math.uchicago.edu/~michaelklug/ReadChromatic.pdf"> An Introduction to Chromatic Polynomials</a>, Journal of Combinatorial Theory, 4(1968)52-71.

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Stirling_numbers_and_exponential_generating_functions">Stirling numbers and exponential generating functions</a>.

%F s(n, k) = A008275(n,k) for n >= 1, k = 1..n; column k = 0 is {1, repeat(0)}.

%F s(n, k) = s(n-1, k-1) - (n-1)*s(n-1, k), n, k >= 1; s(n, 0) = s(0, k) = 0; s(0, 0) = 1.

%F The unsigned numbers a(n, k)=|s(n, k)| satisfy a(n, k)=a(n-1, k-1)+(n-1)*a(n-1, k), n, k >= 1; a(n, 0) = a(0, k) = 0; a(0, 0) = 1.

%F Triangle (signed) = [0, -1, -1, -2, -2, -3, -3, -4, -4, ...] DELTA [1, 0, 1, 0, 1, 0, 1, 0, ...]; Triangle(unsigned) = [0, 1, 1, 2, 2, 3, 3, 4, 4, ...] DELTA [1, 0, 1, 0, 1, 0, 1, 0, ...]; where DELTA is Deléham's operator defined in A084938.

%F Sum_{k=0..n} (-m)^(n-k)*s(n, k) = A000142(n), A001147(n), A007559(n), A007696(n), ... for m = 1, 2, 3, 4, ... .- _Philippe Deléham_, Oct 29 2005

%F A008275*A007318 as infinite lower triangular matrices. - _Gerald McGarvey_, Aug 20 2009

%F T(n,k) = n!*[x^k]([t^n]exp(x*log(1+t))). - _Peter Luschny_, Dec 30 2010, updated Jun 07 2020

%F From _Wolfdieter Lang_, Nov 14 2018: (Start)

%F Recurrence from the Sheffer a-sequence (see a comment above): s(n, k) = (n/k)*Sum_{j=0..n-k} binomial(k-1+j, j)*Bernoulli(j)*s(n-1, k-1+j), for n >= 1 and k >= 1, with s(n, 0) = 0 if n >= 1, and s(0,0) = 1.

%F Boas-Buck type recurrence for column k: s(n, k) = (n!*k/(n - k))*Sum_{j=k..n-1} b(n-1-j)*s(j, k)/j!, for n >= 1 and k = 0..n-1, with input s(n, n) = 1. For sequence b see the Boas-Buck comment above. (End)

%F T(n,k) = Sum_{j=k..n} (-1)^(n-j)*A271705(n,j)*A216294(j,k). - _Mélika Tebni_, Feb 23 2023

%e Triangle begins:

%e n\k 0 1 2 3 4 5 6 7 8 9 ...

%e 0 1

%e 1 0 1

%e 2 0 -1 1

%e 3 0 2 -3 1

%e 4 0 -6 11 -6 1

%e 5 0 24 -50 35 -10 1

%e 6 0 -120 274 -225 85 -15 1

%e 7 0 720 -1764 1624 -735 175 -21 1

%e 8 0 -5040 13068 -13132 6769 -1960 322 -28 1

%e 9 0 40320 -109584 118124 -67284 22449 -4536 546 -36 1

%e ... - _Wolfdieter Lang_, Aug 22 2012

%e ------------------------------------------------------------------

%e From _Wolfdieter Lang_, Nov 14 2018: (Start)

%e Recurrence: s(5,2)= s(4, 1) - 4*s(4, 2) = -6 - 4*11 = -50.

%e Recurrence from the a- and z-sequences: s(6, 3) = 2*(1*1*(-50) + 3*(-1/2)*35 + 6*(1/6)*(-10) + 10*0*1) = -225.

%e Boas-Buck recurrence for column k = 3, with b = {-1/2, 5/12, -3/8, ...}:

%e s(6, 3) = 6!*((-3/8)*1/3! + (5/12)*(-6)/4! + (-1/2)*35/5!) = -225. (End)

%p A048994:= proc(n,k) combinat[stirling1](n,k) end: # _R. J. Mathar_, Feb 23 2009

%p seq(print(seq(coeff(expand(k!*binomial(x,k)),x,i),i=0..k)),k=0..9); # _Peter Luschny_, Jul 13 2009

%p A048994_row := proc(n) local k; seq(coeff(expand(pochhammer(x-n+1,n)), x,k), k=0..n) end: # _Peter Luschny_, Dec 30 2010

%t Table[StirlingS1[n, m], {n, 0, 9}, {m, 0, n}] (* _Peter Luschny_, Dec 30 2010 *)

%o (PARI) a(n,k) = if(k<0 || k>n,0, if(n==0,1,(n-1)*a(n-1,k)+a(n-1,k-1)))

%o (PARI) trg(nn)=for (n=0, nn-1, for (k=0, n, print1(stirling(n,k,1), ", ");); print();); \\ _Michel Marcus_, Jan 19 2015

%o (Maxima) create_list(stirling1(n,k),n,0,12,k,0,n); /* _Emanuele Munarini_, Mar 11 2011 */

%o (Haskell)

%o a048994 n k = a048994_tabl !! n !! k

%o a048994_row n = a048994_tabl !! n

%o a048994_tabl = map fst $ iterate (\(row, i) ->

%o (zipWith (-) ([0] ++ row) $ map (* i) (row ++ [0]), i + 1)) ([1], 0)

%o -- _Reinhard Zumkeller_, Mar 18 2013

%Y See especially A008275 which is the main entry for this triangle. A132393 is an unsigned version, and A008276 is another version.

%Y Cf. A008277, A039814-A039817, A048993, A084938.

%Y A000142(n) = Sum_{k=0..n} |s(n, k)| for n >= 0.

%Y Row sums give A019590(n+1).

%Y Cf. A002209, A027641/A027642, A216294, A271705.

%K sign,tabl,nice,changed

%O 0,8

%A _N. J. A. Sloane_

%E Offset corrected by _R. J. Mathar_, Feb 23 2009

%E Formula corrected by _Philippe Deléham_, Sep 10 2009

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 15 13:23 EDT 2024. Contains 372540 sequences. (Running on oeis4.)