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The purpose of these notes is to introduce a novel multiplication of power
series, which we call the white diamond product. The white diamond product
is obtained by deforming the Hadamard product of power series by the action
of the invertible lower triangular matrix

((
n
k

)
k!
)
. Many well-known sequences

of polynomials including the Bell polynomials, the Lah polynomials, the
Laguerre poynomials and the Bessel polynomials are shown to have simple
expressions in terms of the white diamond product.

1 DEFORMATIONS OF THE HADAMARD PRODUCT

1.1 The Hadamard product. We recall the de�nition of the
Hadamard product of sequences and of power series.

DEFINITIONS

D1: The Hadamard product (or the pointwise product) a ∗ b of a pair of
vectors a = (a(n)) and b = (b(n)) is de�ned to be the vector a ∗ b = (a(n)b(n)).

D2: The Hadamard product A(x) ∗B(x) of the power series

A(x) =

∞∑
n=0

a(n)xn ∈ C[[x]] and B(x) =

∞∑
n=0

b(n)xn ∈ C[[x]] is de�ned as the

power series

A(x) ∗B(x) =
∞∑

n=0

a(n)b(n)xn . (1)

There is a slight abuse of notation here in using the same symbol * to denote
the product of power series and the product of column vectors.

FACTS

F1: The pointwise product of vectors is clearly commutative and associative
and distributes over addition of vectors.

F2: The Hadamard product of power series is clearly commutative,
associative and distributes over addition of power series.
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F3: The identity element for the algebra C[[x]] equipped with the Hadamard
product is the power series 1 + x+ x2 + · · · = 1

1−x .

F4: The set of monomial polynomials {xn}n≥0 form a complete set of
mutually orthogonal idempotents in the algebra of power series equipped with
the Hadamard product, that is,

xi*xj = δijx
i i, j ≥ 0 and

∞∑
i=0

xi = multiplicative identity. (2)

1.2 Deforming the Hadamard product. In what follows it will be
convenient for us to represent a sequence a(n) by an in�nite column vector.
There is an obvious bijective correspondence φ between formal power series
and their coe�cient sequences:

A(x) = a(0) + a(1)x+ a(2)x2 + · · ·
φ
←→


a(0)
a(1)
a(2)
...

 .

If M is an in�nite lower triangular matrix we let M act on the column
vector of coe�cients of a power series by matrix multiplication. We can then
use the bijection φ to pull back this action to an action of M on the
corresponding power series.

DEFINITIONS

D3: We de�ne the action of the lower triangular matrix M on the power series

A(x) =
∑
n≥0

a(n)xn by

MA(x) = φ−1

M

a(0)
a(1)
a(2)
...



 .

D4: Let M now be an invertible in�nite lower triangular matrix. We de�ne

the M -Hadamard product a * b
M

of a pair of column vectors a ≡ a(n) and

b ≡ b(n) to be the column vector

a * b
M

= M−1 (Ma ∗Mb) . (3)
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D5: Let M be an invertible in�nite lower triangular matrix. The

M -Hadamard product A(x) *B(x)
M

of the formal power series A(x) and B(x)

is de�ned as the power series corresponding to the column vector a * b
M

under

the bijection φ:

A(x) *B(x)
M

= φ−1

a *

M
b

 . (4)

Equivalently,

A(x) *B(x)
M

= M−1

MA(x) * MB(x)

 . (5)

FACTS

F5: If M is the identity matrix then the M -Hadamard product is simply the
Hadamard multiplication of power series. We can therefore view the
M -Hadamard product as a deformation of the Hadamard product by the
matrix M .

F6: The power series Mxn is the ordinary generating function for the nth
column of the matrix M .

F7: If A(x) =
∑
i≥0

a(i)xi and B(x) =
∑
j≥0

b(j)xj then

A(x) *B(x)
M

=
∑
i,j≥0

a(i)b(j)

xi *

M
xj

. (6)

F8: Both the M -Hadamard product of column vectors and the M -Hadamard
product of power series are commutative, associative and distribute over
addition of column vectors and power series, respectively.
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F9: It follows from fact F4 that the power series Ei(x) :=M−1xi, i = 0, 1, 2, ...
form a complete set of orthogonal idempotents in the algebra of power series
C[[x]] equipped with the M -Hadamard product; that is,

Ei *

M
Ej = δijEi i, j ≥ 0

and

∞∑
i=0

Ei = M−1
1

1− x
= multiplicative identity.

Every power series A(x) has an idempotent expansion A(x) =

∞∑
n=0

a(n)En(x),

where the coe�cents a(n) are determined by the power series expansion

MA(x) =

∞∑
n=0

a(n)xn.

F10: If A(x) =

∞∑
n=0

a(n)En(x) and B(x) =

∞∑
n=0

b(n)En(x) are the expansions

of the powers series A(x) and B(x) in terms of the basis of orthogonal
idempotents En(x) then

A(x) *B(x)
M

=

∞∑
n=0

a(n)b(n)En(x) . (7)

It follows inductively that the k-fold product

A(x) *

M
A(x) *

M
· · · *

M
A(x

︸ ︷︷ ︸
k factors

) =

∞∑
n=0

a(n)kEn(x) . (8)

Dukes and White [DuWh'16], in a study of the combinatorics of web diagrams
and web matrices, de�ned a commutative and associative binary operation on
formal power series, which they called the black diamond product. They gave
several examples of polynomial sequences of combinatorial interest, such as the
Fubini polynomials Fn(x) and the shifted Legendre polynomials Pn(2x+ 1),
that have simple expressions in terms of the black diamond product. In
[Ba'18] we showed the black diamond product is a particular case of the
M -Hadamard product where M is equal to Pascal's triangle of binomial
coe�cients

((
n
k

))
. In the next section we look at an M -Hadamard product

operator closely related to the black diamond product.
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2 THE WHITE DIAMOND PRODUCT

In this section we work in the algebra C[[x]] with multiplication of power
series given by the M -Hadamard product with M taken to be the lower tri-
angular array

((
n
k

)
k!
)
. We call this multiplication operator the white diamond

product of power series and denote it by the symbol ♦. Thus

A(x)♦B(x) := A(x) *B(x)
M

, M =

((
n

k

)
k!

)
n,k≥0

. (9)

The array M is A008279 in the OEIS, described as the triangle of permuta-
tion coe�cients. The �rst few rows ofM are shown in Table 1. It is not di�cult
to show the inverse array M−1 =

(
(−1)n−k

(
n
k

)
1
n!

)
. The �rst few rows of M−1

are shown in Table 2.

Table 1. Array M =
((

n
k

)
k!
)
, 0 ≤ k ≤ n ≤ 4.

k =0 1 2 3 4
n =0 1
1 1 1
2 1 2 2
3 1 3 6 6
4 1 4 12 24 24

Table 2. Array M−1 =
(
(−1)(n−k)

(
n
k

)
1
n!

)
, 0 ≤ k ≤ n ≤ 4.

k =0 1 2 3 4
n =0 1
1 -1 1
2 1

2 -1 1
2

3 - 16
1
2 - 12

1
6

4 1
24 - 16

1
4 - 16

1
24

If a(n) is a column vector and b(n) :=Ma(n) then it is easy to see from the
de�nition of M that the exponential generating function for the sequence b(n)
and the ordinary generating function for the sequence a(n) are related by

∞∑
n=0

b(n)
xn

n!
= ex

∞∑
n=0

a(n)xn.

This observation leads to the following characterisation of the white diamond
product of power series.
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Let A(x), B(x) ∈ C[[x]]. Associate to this pair of power series a pair of
sequences α(n) and β(n) de�ned by the equations

∞∑
n=0

α(n)
xn

n!
= A(x)ex

∞∑
n=0

β(n)
xn

n!
= B(x)ex.

Then the white diamond product C(x) = A(x)♦B(x) of the series A(x) and
B(x) is the power series de�ned by the equation

∞∑
n=0

α(n)β(n)
xn

n!
= C(x)ex . (10)

We see from fact F7 that in order to calculate the ♦ product of two power
series we need to know the ♦ product of monomial polynomials. This is given
by the following result.

Proposition 1. The white diamond product of two monomial polynomials is
given by

xm ♦xn =

m∑
k=0

m!n!

(n+ k)!

(
n+ k

k

)(
n

m− k

)
xn+k . (11)

Proof.

The proof is exactly similar to the proof of the corresponding result for
the black diamond product [Ba'18, Proposition 2]. The deformation matrix
M =

((
n
k

)
k!
)
. Its inverse M−1 =

(
(−1)n−k

(
n
k

)
1
n!

)
. By Fact F6 the action of

these matrices on monomial polynomials is given by

Mxj =
∑
i≥0

(
i

j

)
j!xi, M−1xj =

∑
i≥0

(−1)i−j
(
i

j

)
1

i!
xi.

Therefore, by the de�nition D5 of the deformed Hadamard product we have

xm ♦xn = M−1 (Mxm ∗Mxn)

= M−1

∑
i≥0

(
i

m

)(
i

n

)
m!n!xi


=

∑
i≥0

(
i

m

)(
i

n

)
m!n!M−1xi

6



=
∑
i≥0

(
i

m

)(
i

n

)
m!n!

∑
N≥0

(−1)N−i
(
N

i

)
1

N !
xN (12)

=
∑
N≥0

m!n!

N !

N∑
i=0

(−1)N−i
(
N

i

)(
i

m

)(
i

n

)
xN

=
∑
N≥0

m!n!

N !
s(N)xN , (13)

where, as in [Ba'18, Proposition 2 ], we de�ne

s(N) =

N∑
i=0

(−1)N−i
(
N

i

)(
i

m

)(
i

n

)
,

a sum dependent on the parameters m and n. With the aid of Maple's
sumtools package we proved in [Ba'18] that s(N) has the closed-form
expression

s(N) =

(
N

N − n

)(
n

m+ n−N

)
. (14)

Therefore

xm ♦xn =
∑
N

m!n!

N !

(
N

N − n

)(
n

m+ n−N

)
xN . (15)

The coe�cient of xN in the series on the right-hand side of (15) is zero if N
lies outside the closed interval [n,m+ n]. If we write N = n+ k, (15) becomes

xm ♦xn =

m∑
k=0

m!n!

(n+ k)!

(
n+ k

k

)(
n

m− k

)
xn+k

completing the proof of the proposition.�

EXAMPLES

E1: x♦xn = nxn + xn+1 .

E2: x2 ♦xn = 2!
(
n
2

)
xn + 2× 1!

(
n
1

)
xn+1 +

(
n
0

)
xn+2 .

E3: x3 ♦xn = 3!
(
n
3

)
xn + 3× 2!

(
n
2

)
xn+1 + 3× 1!

(
n
1

)
xn+2 +

(
n
0

)
xn+3 .

It follows from Proposition 1 that if A(x) and B(x) are integral polynomials
(resp. integral power series) then the series A(x)♦B(x) is an integral
polynomial (resp. integral power series).
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We give several examples of well-known sequences of polynomials of
combinatorial interest that have simple expressions in terms of the ♦ product.
As a matter of notation, we abbreviate the n-fold product A(x)♦ · · ·♦A(x) to
A(x)♦n with the convention that A(x)♦0 = 1.

EXAMPLES

E4: Using example E1 we calculate succesively

x♦x = x+ x2, x♦x♦x = x+ 3x2 + x3,

x♦x♦x♦x = x+ 7x2 + 6x3 + x4.

More generally, the n-fold product

x♦n =

n∑
k=0

{
n
k

}
xk = Bn(x), (16)

where

{
n
k

}
denotes the Stirling number of the second kind and where Bn(x)

denotes the nth Bell (or exponential) polynomial. The Bell polynomials are
the row polynomials of the triangular array of Stirling numbers of the second
kind A048993. The proof of (16) is by a straightforward induction argument,
making use of Example E1 and the recurrence equation{

n
k

}
= k

{
n− 1
k

}
+

{
n− 1
k − 1

}
satis�ed by the Stirling numbers of the second kind.

E5: There is an inverse relation to Example E4 involving the Stirling numbers
of the �rst kind s(n, k) (see A008275): there holds

xn = x♦ (x− 1)♦ (x− 2)♦ · · · ♦ (x− n+ 1)

=

n∑
k=1

s(n, k)x♦k . (17)

A simple inductive proof of this identity can be given using Example E1 and
the recurrence for the Stirling numbers of the �rst kind

s(n+ 1, k) = s(n, k − 1)− ns(n, k).

E6: We also note the following shifted version of Example E4, again easily
proved by induction:

(1 + x)♦n =

n∑
k=0

{
n+ 1
k + 1

}
xk

=
Bn+1(x)

x
. (18)
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It follows from (16) and (18) that the white diamond binomial theorem

(1 + x)♦n =

n∑
k=0

(
n

k

)
x♦k

is equivalent to the well-known recurrence for the Bell polynomials

Bn+1(x) = x

n∑
k=0

(
n

k

)
Bk(x).

E7: For a natural number r, the r-Stirling number

{
n
k

}
r

is de�ned as the

number of set partitions of {1, 2, ..., n} into k blocks subject to the restriction
that the numbers 1, 2, ..., r belong to di�erent blocks. In particular,{
n
k

}
0

=

{
n
k

}
1

=

{
n
k

}
. The r-Stirling numbers of the second kind

satisfy the same recurrence equation as the Stirling numbers of the second
kind (but with di�erent boundary conditions).

An induction argument using Example E1 leads to the expression

(r + x)♦n =

n∑
k=0

{
n+ r
k + r

}
r

xk , (19)

The polynomial on the right side of (19) is the nth row polynomial of the
triangle of r-Stirling numbers (but with a factor of xr removed). For cases see
A143494, A143495, A143496 and A193685.

2.1 Idempotent expansions. According to Fact F9, the power series
Ei(x) =M−1xi, i = 0, 1, 2, ... are a complete set of mutually orthogonal
idempotents in the algebra of power series equipped with the white diamond
product. By Fact F6, the orthogonal idempotent Ei(x) is the generating
function of the i-th column vector of the array M−1 =

(
(−1)n−k

(
n
k

)
1
n!

)
. A

simple calculation gives

Ei(x) = M−1xi

=
xi

i!
e−x . (20)

The multiplicative identity element of the algebra is the constant power series
1, with the idempotent expansion

1 =

∞∑
i=0

Ei(x).
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It is easily seen that

x =

∞∑
i=1

iEi(x)

and hence for constants r and s we have the idempotent expansion

r + sx =

∞∑
i=0

(r + si)Ei(x). (21)

It follows that the n-fold product

(r + sx)♦n =

∞∑
i=0

(r + si)nEi(x)

= e−x
∞∑
i=0

(r + si)n
xi

i!
. (22)

Using (16), the case r = 0, s = 1 of (22) reads

Bn(x) = e−x
n∑

i=0

in
xi

i!
.

This is the well-known Dobinski formula for the Bell polynomials. Thus (22)
can be viewed as a generalised Dobinski formula.

In Table 3 below we list arrays in the OEIS whose row polynomials are of the
form (r + sx)♦n for particular values of the constants r and s (modulo some
di�erences of o�set to those used in the OEIS). The proofs are by induction
using Example E1 and the known recurrences for the elements of the various
arrays listed. In Table 4 we list several other triangular arrays in the OEIS
whose row polynomials have simple expressions in terms of the white diamond
product.
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Table 3. White diamond polynomials (r + sx)♦n in the OEIS
Array Row polynomials In terms of Bell polynomials Idempotent expansion

(Dobinski-type formula)

A048993 x♦n Bn(x) e−x
∞∑
i=0

in xi

i!

A008277 (1 + x)♦n Bn+1(x)
x e−x

∞∑
i=0

(1 + i)n xi

i!

A143494 (2 + x)♦n
n∑

k=0

(
n

k

)
2(n−k)Bk(x) e−x

∞∑
i=0

(2 + i)n xi

i!

A143495 (3 + x)♦n
n∑

k=0

(
n

k

)
3(n−k)Bk(x) e−x

∞∑
i=0

(3 + i)n xi

i!

A143496 (4 + x)♦n
n∑

k=0

(
n

k

)
4(n−k)Bk(x) e−x

∞∑
i=0

(4 + i)n xi

i!

A193685 (5 + x)♦n
n∑

k=0

(
n

k

)
5(n−k)Bk(x) e−x

∞∑
i=0

(5 + i)n xi

i!

A154537 (1 + 2x)♦n
n∑

k=0

(
n

k

)
2kBk(x) e−x

∞∑
i=0

(2i+ 1)n xi

i!

A282629 (1 + 3x)♦n
n∑

k=0

(
n

k

)
3kBk(x) e−x

∞∑
i=0

(3i+ 1)n xi

i!

A225466 (2 + 3x)♦n
n∑

k=0

(
n

k

)
2(n−k)3kBk(x) e−x

∞∑
i=0

(3i+ 2)n xi

i!

A285061 (1 + 4x)♦n
n∑

k=0

(
n

k

)
4kBk(x) e−x

∞∑
i=0

(4i+ 1)n xi

i!

A225467 (3 + 4x)♦n
n∑

k=0

(
n

k

)
3n−k4kBk(x) e−x

∞∑
i=0

(4i+ 3)n xi

i!
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Table 4. Other white diamond polynomials in the OEIS
Array Row polynomials Description
A105278 x♦ (x+ 1)♦ (x+ 2)♦ · · · ♦ (x+ n) Lah polynomial
A023531 x♦ (x− 1)♦ (x− 2)♦ · · · ♦ (x− n) Monomial xn

A035342 x♦ (x+ 2)♦ (x+ 4)♦ · · · ♦ (x+ 2n)
A122850 x♦ (x− 2)♦ (x− 4)♦ · · · ♦ (x− 2n) Shifted reverse Bessel polynomials

(−1)nxθn(−x)
A035469 x♦ (x+ 3)♦ (x+ 6)♦ · · · ♦ (x+ 3n)
A004747 x♦ (x− 3)♦ (x− 6)♦ · · · ♦ (x− 3n)
(signed)
A049029 x♦ (x+ 4)♦ (x+ 8)♦ · · · ♦ (x+ 4n)
A021009 (x+ 1)♦ (x+ 2)♦ · · · ♦ (x+ n) Laguerre polynomial n!Ln(−x)
(signed)
A094587 (x− 1)♦ (x− 2)♦ · · · ♦ (x− n)
(signed)
A265649 (x+ 1)♦ (x+ 3)♦ · · · ♦ (x+ 2n− 1)
A122850 (x− 1)♦ (x− 3)♦ · · · ♦ (x− 2n+ 1) Reverse Bessel polynomial

(−1)nθn(−x)
A048993 x♦x♦ · · · ♦x (n factors) Bell polynomial or Stirling polynomial

for n copies of the complete graph K1

A078739 x2 ♦x2 ♦ · · · ♦x2 (n factors) Stirling polynomial for n copies of the
complete graph K2

A078741 x3 ♦x3 ♦ · · · ♦x3 (n factors) Stirling polynomial for n copies of the
complete graph K3

A090214 x4 ♦x4 ♦ · · · ♦x4 (n factors) Stirling polynomial for n copies of the
complete graph K4

3 RELATED M-HADAMARD PRODUCTS OF POWER SERIES

We brie�y consider two other M -Hadamard products related to the white
diamond product.

3.1. Type B white diamond product

Let now M =
((

n
k

)
k!2k

)
. We denote the associated M -Hadamard product of

power series by the symbol O: thus

A(x)OB(x) := A(x) *B(x)
M

, M =

((
n

k

)
k!2k

)
n,k≥0

. (23)

Adapting the proof of Proposition 1 we �nd the O product of a pair of
monomials is given by

xm Oxn =

m∑
k=0

m!n!

(n+ k)!
2m−k

(
n+ k

m

)(
m

k

)
xn+k . (24)
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One particular case is

xnOxn = xnRn(x)

where Rn(x) =

n∑
k=0

2n−k
(
n

k

)
n!

k!
xk, n = 0, 1, 2, ... are the row polynomials of

the array A286724.

Setting m = 1 in (24) gives

xOxn = 2nxn + xn+1. (25)

Using this relation, a simple induction argument shows that the n-fold product
(1 + x)O...O (1 + x) is the nth row polynomial of A039755, the triangle of
B-analogues of Stirling numbers of the second kind. Comparing this result
with (18), it seems reasonable to refer to the O product as the type B analogue
of the white diamond product ♦.

In this case, the mutually orthogonal idempotent power series Ei(x) are given
by

Ei(x) = M−1xi

=
xi

2ii!
e−

x
2 i = 0, 1, 2, .... (26)

Then the n-fold product (r + sx)On has the idempotent expansion

(r + sx)On =

∞∑
i=0

(r + 2si)nEi(x)

= e−
x
2

∞∑
i=0

(r + 2si)n
xi

2ii!
. (27)

The row polynomials of several triangular arrays in the OEIS have simple
expressions as O products. We give some examples in Table 5.
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Table 5.
Array Row polynomial Description

A039755 (1 + x)O (1 + x)O ...O (1 + x)︸ ︷︷ ︸
nfactors

Type B Stirling numbers of the second kind

A075497 xO ...Ox︸ ︷︷ ︸
nfactors

Stirling numbers of the second kind

scaled with powers of 2
A075497 (2 + x)O (2 + x)O ...O (2 + x)︸ ︷︷ ︸

nfactors

Stirling numbers of the second kind

(o�set 0) scaled with powers of 2

A046089 xO (x+ 1)O (x+ 2)O ...O (x+ n)︸ ︷︷ ︸
nfactors

Exponential Riordan array[f(x),
´ x
0
f(t)dt],

f(x) = 1/(1− x)3
A079621 xO (x+ 2)O (x+ 4)O ...O (x+ 2n)︸ ︷︷ ︸

nfactors

Exponential Riordan array[f(x),
´ x
0
f(t)dt],

f(x) = 1/(1− 2x)

A176230 (x+ 1)O (x+ 3)O ...O (x+ 2n− 1)︸ ︷︷ ︸
nfactors

Exponential Riordan array
[

1√
1−2x ,

x
1−2x

]
.

3.2 q-analogue of the white diamond product

Consider the M -Hadamard product where the deformation matrix is de�ned

as M =
((

n
k

)
q
[k]q!

)
. Here

(
n
k

)
q
is the q-binomial coe�cient and [k]q! is the

q-factorial. Denote the resulting multiplication operator on power series by ♦q.
We can view this operator as a q-analogue of the white diamond product and
investigate q-analogues of the results of Section 2. As an example, the
q-analogue of (16) is

x♦q...♦q x︸ ︷︷ ︸
nfactors

=

n∑
k=0

{
n
k

}
q

xk n = 0, 1, 2, ...,

where

{
n
k

}
q

is a q-Stirling number of the second kind.
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