The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A048669 The Jacobsthal function g(n): maximal gap in a list of all the integers relatively prime to n. 17

%I #83 Jan 10 2022 15:56:26

%S 1,2,2,2,2,4,2,2,2,4,2,4,2,4,3,2,2,4,2,4,3,4,2,4,2,4,2,4,2,6,2,2,3,4,

%T 3,4,2,4,3,4,2,6,2,4,3,4,2,4,2,4,3,4,2,4,3,4,3,4,2,6,2,4,3,2,3,6,2,4,

%U 3,6,2,4,2,4,3,4,3,6,2,4,2,4,2,6,3,4,3,4,2,6,3,4,3,4,3,4,2,4,3,4,2,6,2,4,5

%N The Jacobsthal function g(n): maximal gap in a list of all the integers relatively prime to n.

%C Equivalently, g(n) is the least integer such that among any g(n) consecutive integers i, i+1, ..., i+g(n)-1 there is at least one which is relatively prime to n.

%C The definition refers to all integers, not just those in the range 1..n-1.

%C Differs from A070194 by 1 at the primes. - _T. D. Noe_, Mar 21 2007

%C Jacobsthal's function is used in the proofs of Recamán's and Pomerance's conjectures on P-integers--see A192224. - _Jonathan Sondow_, Jun 14 2014

%D E. Jacobsthal, Uber Sequenzen ganzer Zahlen, von denen keine zu n teilerfremd ist, I, II, III. Norske Vid. Selsk. Forh., 33, 1960, 117-139.

%D D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, Pages 33-34.

%D E. Westzynthius, Uber die Verteilung der Zahlen, die zu der n ersten Primzahlen teilerfremd sind, Comm. Phys. Math. Helsingfors 25 (1931), 1-37.

%H T. D. Noe, <a href="/A048669/b048669.txt">Table of n, a(n) for n = 1..10000</a>

%H Fintan Costello, and Paul Watts, <a href="https://arxiv.org/abs/1306.1064">A short note on Jacobsthal's function</a>, arXiv preprint arXiv:1306.1064 [math.NT], 2013.

%H P. Erdős, <a href="http://www.digizeitschriften.de/dms/img/?PPN=GDZPPN002346826">On the integers relatively prime to n and on a number theoretic function considered by Jacobsthal</a>. Math. Scand., 10, 1962, 163-170.

%H H. Iwaniec, <a href="https://doi.org/10.1515/dema-1978-0121">On the problem of Jacobsthal</a>, Demonstratio Math. 11 (1978), pp. 225-231.

%H Hans-Joachim Kanold, <a href="https://eudml.org/doc/161543">Über eine zahlentheoretische Funktion von Jacobsthal</a>, Mathematische Annalen 170.4 (1967): 314-326.

%H Gerhard R. Paseman, <a href="https://arxiv.org/abs/1311.5944">Updating an upper bound of Erik Westzynthius</a>, arXiv preprint arXiv:1311.5944 [math.NT], 2013-2014.

%H Carl Pomerance, <a href="https://doi.org/10.1016/0022-314X(80)90056-6">A note on the least prime in an arithmetic progression</a>, Journal of Number Theory 12.2 (1980): 218-223.

%H Harlan Stevens, <a href="https://eudml.org/doc/162943">On Jacobsthal's g(n)-function</a>, Mathematische Annalen 226.1 (1977): 95-97.

%H Mario Ziller, John F. Morack, <a href="https://arxiv.org/abs/1611.03310">Algorithmic concepts for the computation of Jacobsthal's function</a>, arXiv:1611.03310 [math.NT], 2016.

%F From _N. J. A. Sloane_, Apr 19 2017 (Start):

%F g(n) = g(Rad(n)) (cf. A007947). So in studying g(n) we may focus on the case when n is a product of w (say) distinct primes.

%F g(n) <= 2^w for all w [Kanold].

%F g(n) <= 2^(1/w) for all w >= e^50 [Kanold].

%F For some unknown X, g(n) <= X*(w*log(w))^2 for all w [Iwaniec].

%F (End)

%F g(n) << (log(n))^2, as proved by Iwaniec. - _Charles R Greathouse IV_, Sep 08 2012.

%e g(6)=4 because the gap between 1 and 5, both being relatively prime to 6, is maximal and 5-1 = 4.

%e g(7)=2, because the numbers relatively prime to 7 are 1,2,3,4,5,6,8,9,10,..., and the biggest gap is 2. Similarly a(p) = 2 for any prime p. - _N. J. A. Sloane_, Sep 08 2012

%t g[n_] := Module[{L = 1, m = 1}, For[k = 2, k <= n+1, k++, If[GCD[k, n] == 1, If[L+m < k, m = k-L]; L = k]]; m]; Table[g[n], {n, 1, 105}] (* _Jean-François Alcover_, Sep 03 2013, after _M. F. Hasler_ *)

%t Table[Max[Differences[Select[Range[110],CoprimeQ[#,n]&]]],{n,110}] (* _Harvey P. Dale_, Jan 10 2022 *)

%o (PARI) A048669(n)=my(L=1,m=1);for(k=2,n+1,gcd(k,n)>1 && next;L+m<k && m=k-L;L=k);m \\ _M. F. Hasler_, Sep 08 2012

%o (Haskell)

%o a048669 n = maximum $ zipWith (-) (tail ts) ts where

%o ts = a038566_row n ++ [n + 1]

%o -- _Reinhard Zumkeller_, Oct 01 2012

%Y Essentially same as A049298. See A132468 for another version.

%Y Cf. A048670, A070971, A007947, A038566, A192224, A285183.

%K nonn,easy,nice

%O 1,2

%A _Jan Kristian Haugland_

%E Edited, changed symbol to g(n), added references pertaining to bounds. - _N. J. A. Sloane_, Apr 19 2017

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 5 19:33 EDT 2024. Contains 373110 sequences. (Running on oeis4.)