The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A046699 a(1) = a(2) = 1, a(n) = a(n - a(n-1)) + a(n-1 - a(n-2)) if n > 2. 25

%I #141 Aug 26 2022 10:25:59

%S 1,1,2,2,3,4,4,4,5,6,6,7,8,8,8,8,9,10,10,11,12,12,12,13,14,14,15,16,

%T 16,16,16,16,17,18,18,19,20,20,20,21,22,22,23,24,24,24,24,25,26,26,27,

%U 28,28,28,29,30,30,31,32,32,32,32,32,32,33,34,34,35,36,36,36,37

%N a(1) = a(2) = 1, a(n) = a(n - a(n-1)) + a(n-1 - a(n-2)) if n > 2.

%C Ignoring first term, this is the meta-Fibonacci sequence for s=0. - _Frank Ruskey_ and Chris Deugau (deugaucj(AT)uvic.ca)

%C Except for the first term, n occurs A001511(n) times. - _Franklin T. Adams-Watters_, Oct 22 2006

%D Sequence was proposed by Reg Allenby.

%D B. W. Conolly, "Meta-Fibonacci sequences," in S. Vajda, editor, Fibonacci and Lucas Numbers and the Golden Section. Halstead Press, NY, 1989, pp. 127-138. See Eq. (2).

%D Michael Doob, The Canadian Mathematical Olympiad & L'Olympiade Mathématique du Canada 1969-1993, Canadian Mathematical Society & Société Mathématique du Canada, Problem 5, 1990, pp. 212-213, 1993.

%D S. Vajda, Fibonacci and Lucas Numbers and the Golden Section, Wiley, 1989, see p. 129.

%D S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 129.

%H N. J. A. Sloane, <a href="/A046699/b046699.txt">Table of n, a(n) for n = 1..20000</a>

%H Altug Alkan, <a href="https://doi.org//10.1155/2018/8517125">On a Generalization of Hofstadter's Q-Sequence: A Family of Chaotic Generational Structures</a>, Complexity (2018) Article ID 8517125.

%H Joerg Arndt, <a href="http://www.jjj.de/fxt/#fxtbook">Matters Computational (The Fxtbook)</a>

%H Joseph Callaghan, John J. Chew III, and Stephen M. Tanny, <a href="http://dx.doi.org/10.1137/S0895480103421397">On the behavior of a family of meta-Fibonacci sequences</a>, SIAM Journal on Discrete Mathematics 18.4 (2005): 794-824. See p. 794. - _N. J. A. Sloane_, Apr 16 2014

%H M. Celaya and F. Ruskey, <a href="http://arxiv.org/abs/1307.0153">Morphic Words and Nested Recurrence Relations</a>, arXiv preprint arXiv:1307.0153 [math.CO], 2013.

%H C. Deugau and F. Ruskey, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL12/Ruskey/ruskey6.html">Complete k-ary Trees and Generalized Meta-Fibonacci Sequences</a>, J. Integer Seq., Vol. 12. [This is a later version than that in the GenMetaFib.html link]

%H C. Deugau and F. Ruskey, <a href="http://www.cs.uvic.ca/~ruskey/Publications/MetaFib/GenMetaFib.html">Complete k-ary Trees and Generalized Meta-Fibonacci Sequences</a>

%H A. Erickson, A. Isgur, B. W. Jackson, F. Ruskey and S. M. Tanny, <a href="http://webhome.cs.uvic.ca/~ruskey/Publications/MetaFib/ConollyLikeMay14.pdf">Nested recurrence relations with Conolly-like solutions</a>, See Table 2.

%H Nathan Fox, <a href="https://arxiv.org/abs/1611.08244">A Slow Relative of Hofstadter's Q-Sequence</a>, arXiv:1611.08244 [math.NT], 2016.

%H Nathan Fox, <a href="https://vimeo.com/322291024">Trees, Fibonacci Numbers, and Nested Recurrences</a>, Rutgers University Experimental Math Seminar, Mar 07, 2019.

%H Nathan Fox, <a href="https://arxiv.org/abs/2203.09340">Connecting Slow Solutions to Nested Recurrences with Linear Recurrent Sequences</a>, arXiv:2203.09340 [math.CO], 2022.

%H The IMO Compendium, <a href="https://imomath.com/othercomp/Can/CanMO90.pdf">Problem 5</a>, 22nd Canadian Mathematical Olympiad 1990.

%H Abraham Isgur, Mustazee Rahman, and Stephen Tanny, <a href="http://dx.doi.org/10.1007/s00026-013-0202-9">Solving non-homogeneous nested recursions using trees</a>, Annals of Combinatorics 17.4 (2013): 695-710. See p. 695. - _N. J. A. Sloane_, Apr 16 2014

%H A. Isgur, R. Lech, S. Moore, S. Tanny, Y. Verberne, and Y. Zhang, <a href="http://dx.doi.org/10.1137/15M1040505">Constructing New Families of Nested Recursions with Slow Solutions</a>, SIAM J. Discrete Math., 30(2), 2016, 1128-1147. (20 pages); DOI:10.1137/15M1040505.

%H B. Jackson and F. Ruskey, <a href="http://www.cs.uvic.ca/~ruskey/Publications/MetaFib/MetaFib.html">Meta-Fibonacci Sequences, Binary Trees and Extremal Compact Codes</a>

%H B. Jackson and F. Ruskey, <a href="https://doi.org/10.37236/1052">Meta-Fibonacci Sequences, Binary Trees and Extremal Compact Codes</a>, Electronic Journal of Combinatorics, 13 (2006), #R26, 13 pages.

%H Oliver Kullmann and Xishun Zhao, <a href="http://arxiv.org/abs/1505.02318">Parameters for minimal unsatisfiability: Smarandache primitive numbers and full clauses</a>, arXiv preprint, arXiv:1505.02318 [cs.DM], 2015.

%H Thomas M. Lewis and Fabian Salinas, <a href="https://arxiv.org/abs/2109.07328">Optimal pebbling of complete binary trees and a meta-Fibonacci sequence</a>, arXiv:2109.07328 [math.CO], 2021.

%H Ramin Naimi and Eric Sundberg, <a href="https://arxiv.org/abs/1902.02929">A Combinatorial Problem Solved by a Meta-Fibonacci Recurrence Relation</a>, arXiv:1902.02929 [math.CO], 2019.

%H <a href="/index/Ho#Hofstadter">Index entries for Hofstadter-type sequences</a>.

%H <a href="/index/O#Olympiads">Index to sequences related to Olympiads</a>.

%F First differences seem to be A079559. - _Vladeta Jovovic_, Nov 30 2003. This is correct and not too hard to prove, giving the generating function x + x^2(1+x)(1+x^3)(1+x^7)(1+x^15).../(1-x). - _Paul Boddington_, Jul 30 2004

%F G.f.: x + x^2/(1-x) * Product_{n=1}^{infinity} (1 + x^(2^n-1)). - _Frank Ruskey_ and Chris Deugau (deugaucj(AT)uvic.ca)

%F For n>=1, a(n)=w(n-1) where w(n) is the least k such that 2^n divides (2k)!. - _Benoit Cloitre_, Jan 19 2007

%F Conjecture: a(n+1) = a(n) + A215530(a(n) + n) for all n > 0. - _Velin Yanev_, Oct 17 2019

%F From _Bernard Schott_, Dec 03 2021: (Start)

%F a(n) <= a(n+1) <= a(n) +1.

%F For n > 1, if a(n) is odd, then a(n+1) = a(n) + 1.

%F a(2^n+1) = 2^(n-1) + 1 for n > 0.

%F Results coming from the 5th problem proposed during the 22nd Canadian Mathematical Olympiad in 1990 (link IMO Compendium and Doob reference). (End)

%p a := proc(n) option remember; if n <= 1 then return 1 end if; if n <= 2 then return 2 end if; return add(a(n - i + 1 - a(n - i)), i = 1 .. 2) end proc # _Frank Ruskey_ and Chris Deugau (deugaucj(AT)uvic.ca)

%p a := proc(n) option remember; if n <= 2 then 1 else a(n - a(n-1)) + a(n-1 - a(n-2)); fi; end; # _N. J. A. Sloane_, Apr 16 2014

%t a[n_] := (k = 1; While[ !Divisible[(2*++k)!, 2^(n-1)]]; k); a[1] = a[2] = 1; Table[a[n], {n, 1, 72}] (* _Jean-François Alcover_, Oct 06 2011, after _Benoit Cloitre_ *)

%t CoefficientList[ Series[1 + x/(1 - x)*Product[1 + x^(2^n - 1), {n, 6}], {x, 0, 80}], x] (* or *)

%t a[1] = a[2] = 1; a[n_] := a[n] = a[n - a[n - 1]] + a[n - 1 - a[n - 2]]; Array[a, 80] (* _Robert G. Wilson v_, Sep 08 2014 *)

%o (PARI) a(n)=if(n<0,1,s=1;while((2*s)!%2^(n-1)>0,s++);s) \\ _Benoit Cloitre_, Jan 19 2007

%o (Haskell)

%o a046699 n = a046699_list !! (n-1)

%o a046699_list = 1 : 1 : zipWith (+) zs (tail zs) where

%o zs = map a046699 $ zipWith (-) [2..] a046699_list

%o -- _Reinhard Zumkeller_, Jan 02 2012

%o (Maxima)

%o a[1]:1$

%o a[2]:1$

%o a[n]:=a[n-a[n-1]]+a[n-1-a[n-2]]$

%o makelist(a[n],n,2,60); /* _Martin Ettl_, Oct 29 2012 */

%o (Python)

%o from sympy import factorial

%o def a(n):

%o if n<3: return 1

%o s=1

%o while factorial(2*s)%(2**(n - 1))>0: s+=1

%o return s

%o print([a(n) for n in range(1, 101)]) # _Indranil Ghosh_, Jun 11 2017, after _Benoit Cloitre_

%o (Magma) [ n le 2 select 1 else Self(n - Self(n-1)) + Self(n-1 -Self(n-2)):n in [1..80]]; // _Marius A. Burtea_, Oct 17 2019

%Y Cf. A001511, A005185, A005187, A007843, A055938, A079559, A080578, A101925, A182105, A213714, A226222, A234016, A275363, A324473, A324475, A324477.

%Y Callaghan et al. (2005)'s sequences T_{0,k}(n) for k=1 through 7 are A000012, A046699, A046702, A240835, A241154, A241155, A240830.

%K nonn,nice

%O 1,3

%A _R. K. Guy_

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 21 08:56 EDT 2024. Contains 372733 sequences. (Running on oeis4.)