login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A046521 Array T(i,j) = binomial(-1/2-i,j)*(-4)^j, i,j >= 0 read by antidiagonals going down. 39
1, 2, 1, 6, 6, 1, 20, 30, 10, 1, 70, 140, 70, 14, 1, 252, 630, 420, 126, 18, 1, 924, 2772, 2310, 924, 198, 22, 1, 3432, 12012, 12012, 6006, 1716, 286, 26, 1, 12870, 51480, 60060, 36036, 12870, 2860, 390, 30, 1, 48620, 218790, 291720, 204204, 87516, 24310 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
Or, a triangle related to A000984 (central binomial) and A000302 (powers of 4).
This is an example of a Riordan matrix. See the Shapiro et al. reference quoted under A053121 and Notes 1 and 2 of the Wolfdieter Lang reference, p. 306.
As a number triangle, this is the Riordan array (1/sqrt(1-4x),x/(1-4x)). - Paul Barry, May 30 2005
The A- and Z- sequences for this Riordan matrix are (see the Wolfdieter Lang link under A006232 for the D. G. Rogers, D. Merlini et al. and R. Sprugnoli references on Riordan A- and Z-sequences with a summary): A-sequence [1,4,0,0,0,...] and Z-sequence 4+2*A000108(n)*(-1)^(n+1)=[2, 2, -4, 10, -28, 84, -264, 858, -2860, 9724, -33592, 117572, -416024, 1485800, -5348880, 19389690, -70715340, 259289580, -955277400, 3534526380], n >= 0. The o.g.f. for the Z-sequence is 4-2*c(-x) with the Catalan number o.g.f. c(x). - Wolfdieter Lang, Jun 01 2007
As a triangle, T(2n,n) is A001448. Row sums are A046748. Diagonal sums are A176280. - Paul Barry, Apr 14 2010
From Wolfdieter Lang, Aug 10 2017: (Start)
The row polynomials R(n, x) of Riordan triangles R = (G(x), F(x)), with F(x)= x*Fhat(x), belong to the class of Boas-Buck polynomials (see the reference). Hence they satisfy the Boas-Buck identity (we use the notation of Rainville, Theorem 50, p. 141):
(E_x - n*1)*R(n, x) = -Sum_{k=0..n-1} (alpha(k)*1 + beta(k)*E_x)*R(n-1.k, x), for n >= 0, where E_x = x*d/dx (Euler operator). The Boas-Buck sequences are given by alpha(k) := [x^k] ((d/dx)log(G(x))) and beta(k) := [x^k] (d/dx)log(Fhat(x)).
This entails a recurrence for the sequence of column m of the Riordan triangle T, n > m >= 0: T(n, m) = (1/(n-m))*Sum_{k=m..n-1} (alpha(n-1-k) + m*beta(n-1-k))*T(k, m), with input T(m,m).
For the present case the Boas-Buck identity for the row polynomials is (E_x - n*1)*R(n, x) = -Sum_{k=0..n-1} 2^(2*k+1)*(1 + 2*E_x)*R(n-1-k, x), for n >= 0. For the ensuing recurrence for the columns m of the triangle T see the formula and example section. (End)
From Peter Bala, Mar 04 2018: (Start)
The following two remarks are particular cases of more general results for Riordan arrays of the form (f(x), x/(1 - k*x)).
1) Let R(n,x) denote the n-th row polynomial of this triangle. The polynomial R(n,4*x) has the e.g.f. Sum_{k = 0..n} T(n,k)*(4*x)/k!. The e.g.f. for the n-th diagonal of the triangle (starting at n = 0 for the main diagonal) equals exp(x) * the e.g.f. for the polynomial R(n,4*x). For example, when n = 3 we have exp(x)*(20 + 30*(4*x) + 10*(4*x)^2/2! + (4*x)^3/3!) = 20 + 140*x + 420*x^2/2! + 924*x^3/3! + 1716*x^4/4! + ....
2) Let P(n,x) = Sum_{k = 0..n} T(n,k)*x^(n-k) denote the n-th row polynomial in descending powers of x. P(n,x) is the n-th degree Taylor polynomial of (1 + 4*x)^(n-1/2) about 0. For example, for n = 4 we have (1 + 4*x)^(7/2) = 70*x^4 + 140*x^3 + 70*x^2 + 14*x + 1 + O(x^5).
Let C(x) = (1 - sqrt(1 - 4*x))/(2*x) denote the o.g.f. of the Catalan numbers A000108. The derivatives of C(x) are determined by the identity (-1)^n * x^n/n! * (d/dx)^n(C(x)) = 1/(2*x)*( 1 - P(n,-x)/(1 - 4*x)^(n-1/2) ), n = 0,1,2,.... See Lang 2002. Cf. A283150 and A283151. (End)
REFERENCES
Ralph P. Boas, jr. and R. Creighton Buck, Polynomial Expansions of analytic functions, Springer, 1958, pp. 17 - 21, (last sign in eq. (6.11) should be -).
Earl D. Rainville, Special Functions, The Macmillan Company, New York, 1960, ch. 8, sect. 76, 140 - 146.
LINKS
Paul Barry, Embedding structures associated with Riordan arrays and moment matrices, arXiv preprint arXiv:1312.0583 [math.CO], 2013.
J. W. Bober, Factorial ratios, hypergeometric series, and a family of step functions, arXiv:0709.1977 [math.NT], 2007; J. London Math. Soc. (2) 79 2009, 422-444.
Wolfdieter Lang, First 10 rows.
Wolfdieter Lang, On polynomials related to derivatives of the generating function of Catalan numbers, Fib. Quart. 40,4 (2002) 299-313; T(n,m) is called B(n,m) there.
H. Prodinger, Some information about the binomial transform, The Fibonacci Quarterly, 32, 1994, 412-415.
FORMULA
T(n, m) = binomial(2*n, n)*binomial(n, m)/binomial(2*m, m), n >= m >= 0.
G.f. for column m: ((x/(1-4*x))^m)/sqrt(1-4*x).
Recurrence from the A-sequence given above: a(n,m) = a(n-1,m-1) + 4*a(n-1,m), for n >= m >= 1.
Recurrence from the Z-sequence given above: a(n,0) = Sum_{j=0..n-1} Z(j)*a(n-1,j), n >= 1; a(0,0)=1.
As a number triangle, T(n,k) = C(2*n,n)*C(n,k)/C(2*k,k) = C(n-1/2,n-k)*4^(n-k). - Paul Barry, Apr 14 2010
From Peter Bala, Apr 11 2012: (Start):
One of three infinite families of integral factorial ratio sequences of height 1 (see Bober, Theorem 1.2). The other two are A007318 and A068555.
The triangular array equals exp(S), where the infinitesimal generator S has [2,6,10,14,18,...] on the main subdiagonal and zeros elsewhere.
Recurrence equation for the square array: T(n+1,k) = (k+1)/(4*n+2)*T(n,k+1). (End)
T(n,k) = 4^(n-k)*A006882(2*n - 1)/(A006882(2*n - 2*k)*A006882(2*k - 1)) = 4^(n-k)*(2*n - 1)!!/((2*n - 2*k)!*(2*k - 1)!!). - Peter Bala, Nov 07 2016
Boas-Buck recurrence for column m, m > n >= 0: T(n, m) = (2*(2*m+1)/(n-m))*Sum_{k=m..n-1} 4^(n-1-k)*T(k, m), with input T(n, n) = 1. See a comment above. - Wolfdieter Lang, Aug 10 2017
From Peter Bala, Aug 13 2021: (Start)
Analogous to the binomial transform we have the following sequence transformation formula: g(n) = Sum_{k = 0..n} T(n,k)*b^(n-k)*f(k) iff f(n) = Sum_{k = 0..n} (-1)^(n-k)*T(n,k)*b^(n-k)*g(k). See Prodinger, bottom of p. 413, with b replaced with 4*b, c = 1 and d = 1/2.
Equivalently, if F(x) = Sum_{n >= 0} f(n)*x^n and G(x) = Sum_{n >= 0} g(n)*x^n are a pair of formal power series then
G(x) = 1/sqrt(1 - 4*b*x) * F(x/(1 - 4*b*x)) iff F(x) = 1/sqrt(1 + 4*b*x) * G(x/(1 + 4*b*x)).
The m-th power of this array has entries m^(n-k)*T(n,k). (End)
EXAMPLE
Array begins:
1, 2, 6, 20, 70, ...
1, 6, 30, 140, 630, ...
1, 10, 70, 420, 2310, ...
1, 14, 126, 924, 6006, ...
Recurrence from A-sequence: 140 = a(4,1) = 20 + 4*30.
Recurrence from Z-sequence: 252 = a(5,0) = 2*70 + 2*140 - 4*70 + 10*14 - 28*1.
From Paul Barry, Apr 14 2010: (Start)
As a number triangle, T(n, m) begins:
n\k 0 1 2 3 4 5 6 7 8 9 10 ...
0: 1
1: 2 1
2: 6 6 1
3: 20 30 10 1
4: 70 140 70 14 1
5: 252 630 420 126 18 1
6: 924 2772 2310 924 198 22 1
7: 3432 12012 12012 6006 1716 286 26 1
8: 12870 51480 60060 36036 12870 2860 390 30 1
9: 48620 218790 291720 204204 87516 24310 4420 510 34 1
10: 184756 923780 1385670 1108536 554268 184756 41990 6460 646 38 1
... [Reformatted and extended by Wolfdieter Lang, Aug 10 2017]
Production matrix begins
2, 1,
2, 4, 1,
-4, 0, 4, 1,
10, 0, 0, 4, 1,
-28, 0, 0, 0, 4, 1,
84, 0, 0, 0, 0, 4, 1,
-264, 0, 0, 0, 0, 0, 4, 1,
858, 0, 0, 0, 0, 0, 0, 4, 1,
-2860, 0, 0, 0, 0, 0, 0, 0, 4, 1 (End)
Boas-Buck recurrence for column m = 2, and n = 4: T(4, 2) = (2*(2*2+1)/2) * Sum_{k=2..3} 4^(3-k)*T(k, 2) = 5*(4*1 + 1*10) = 70. - Wolfdieter Lang, Aug 10 2017
From Peter Bala, Feb 15 2018: (Start)
With C(x) = (1 - sqrt( 1 - 4*x))/(2*x),
-x^3/3! * (d/dx)^3(C(x)) = 1/(2*x)*( 1 - (1 - 10*x + 30*x^2 - 20*x^3)/(1 - 4*x)^(5/2) ).
x^4/4! * (d/dx)^4(C(x)) = 1/(2*x)*( 1 - (1 - 14*x + 70*x^2 - 140*x^3 + 70*x^4 )/(1 - 4*x)^(7/2) ). (End)
MATHEMATICA
t[i_, j_] := If[i < 0 || j < 0, 0, (2*i + 2*j)!*i!/(2*i)!/(i + j)!/j!]; Flatten[Reverse /@ Table[t[n, k - n] , {k, 0, 9}, {n, k, 0, -1}]][[1 ;; 51]] (* Jean-François Alcover, Jun 01 2011, after PARI prog. *)
PROG
(PARI) T(i, j)=if(i<0 || j<0, 0, (2*i+2*j)!*i!/(2*i)!/(i+j)!/j!)
(GAP) Flat(List([0..9], n->List([0..n], m->Binomial(2*n, n)*Binomial(n, m)/Binomial(2*m, m)))); # Muniru A Asiru, Jul 19 2018
CROSSREFS
Columns for m=0..10 are A000984, A002457, A002802, A020918-A020932 (only even numbers). Row sums: A046748. Cf. A007318, A068555.
Sequence in context: A269646 A269336 A300700 * A104684 A060538 A260848
KEYWORD
nonn,tabl,easy
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 27 07:11 EDT 2024. Contains 372009 sequences. (Running on oeis4.)