The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A045379 Expansion of e.g.f.: exp(4*z + exp(z) - 1). 12

%I #51 Dec 04 2022 08:33:18

%S 1,5,26,141,799,4736,29371,190497,1291020,9131275,67310847,516369838,

%T 4116416797,34051164985,291871399682,2588914083065,23733360653955,

%U 224592570163192,2191466128865567,22024934452712437,227771488390279260

%N Expansion of e.g.f.: exp(4*z + exp(z) - 1).

%H Seiichi Manyama, <a href="/A045379/b045379.txt">Table of n, a(n) for n = 0..500</a>

%H R. Jakimczuk, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL14/Jakimczuk2/jakimczuk17.html">Successive Derivatives and Integer Sequences</a>, J. Int. Seq. 14 (2011) # 11.7.3.

%H J. W. Layman, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL4/LAYMAN/hankel.html">The Hankel Transform and Some of its Properties</a>, J. Integer Sequences, 4 (2001), #01.1.5.

%H I. Mezo, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL14/Mezo/mezo9.html">The r-Bell numbers</a>, J. Int. Seq. 14 (2011) # 11.1.1.

%F a(n) = exp(-1)*Sum_{k>=0} ((k+4)^n)/k!. - _Gerald McGarvey_, Jun 03 2004

%F A recursive formula to compute some integer sequences (including A000110, A005493, A005494 and the present sequence). Define G(n, m), where n, m >= 0, as follows: G(0, m) = 1; G(n, m) = G(n-1, m) * (m+1) + G(n-1, m+1), where n > 0. Then G(n, 0) = A000110(n+1); G(n, 1) = A005493(n+1); G(n, 2) = A005494(n+1); G(n, 3) = A045379(n+1). - Alexey Andreev (ava12(AT)nm.ru), Jan 05 2006

%F Define f_1(x), f_2(x), ... such that f_1(x)=x^3*e^x, f_{n+1}(x) = (d/dx)(x*f_n(x)), for n=2,3,.... Then a(n-1) = e^(-1)*f_n(1). - _Milan Janjic_, May 30 2008

%F Let A be the upper Hessenberg matrix of order n defined by: A[i,i-1]=-1, A[i,j]=binomial(j-1,i-1), (i <= j), and A[i,j]=0 otherwise. Then, for n >= 1, a(n) = (-1)^(n)*charpoly(A,-4). - _Milan Janjic_, Jul 08 2010

%F G.f.: 1/U(0) where U(k) = 1 - x*(k+5) - x^2*(k+1)/U(k+1); (continued fraction, 1-step). - _Sergei N. Gladkovskii_, Oct 11 2012

%F a(n) ~ exp(n/LambertW(n) - n - 1) * n^(n + 4) / LambertW(n)^(n + 9/2). - _Vaclav Kotesovec_, Jun 10 2020

%F a(0) = 1; a(n) = 4 * a(n-1) + Sum_{k=0..n-1} binomial(n-1,k) * a(k). - _Ilya Gutkovskiy_, Jul 02 2020

%F a(n) = Sum_{j=0..n} binomial(n, j)*4^(n-j)*A000110(j). - _G. C. Greubel_, Dec 01 2022

%t a[0]= 1; a[n_]:= a[n]= 4*a[n-1] +Sum[Binomial[n-1, k]*a[k], {k,0,n-1}]; Array[a, 21, 0] (* _Amiram Eldar_, Jul 03 2020 *)

%o (Magma)

%o A045379:= func< n | (&+[Binomial(n,j)*4^(n-j)*Bell(j): j in [0..n]]) >;

%o [A045379(n): n in [0..30]]; // _G. C. Greubel_, Dec 01 2022

%o (SageMath)

%o def A045379(n): return sum( 4^(n-j)*bell_number(j)*binomial(n,j) for j in range(n+1))

%o [A045379(n) for n in range(31)] # _G. C. Greubel_, Dec 01 2022

%Y Cf. A000110, A005493, A005494, A108087, A196834.

%Y Equals the row sums of triangle A143496. - _Wolfdieter Lang_, Sep 29 2011

%K nonn

%O 0,2

%A _N. J. A. Sloane_

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 28 19:24 EDT 2024. Contains 372919 sequences. (Running on oeis4.)