The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A042977 Triangle T(n,k) read by rows: coefficients of a polynomial sequence occurring when calculating the n-th derivative of Lambert function W. 14

%I #91 Sep 29 2021 10:26:27

%S 1,-2,-1,9,8,2,-64,-79,-36,-6,625,974,622,192,24,-7776,-14543,-11758,

%T -5126,-1200,-120,117649,255828,248250,137512,45756,8640,720,-2097152,

%U -5187775,-5846760,-3892430,-1651480,-445572,-70560,-5040

%N Triangle T(n,k) read by rows: coefficients of a polynomial sequence occurring when calculating the n-th derivative of Lambert function W.

%C The first derivative of the Lambert W function is given by dW/dz = exp(-W)/(1+W). Further differentiation yields d^2/dz^2(W) = exp(-2*W)*(-2-W)/(1+W)^3, d^3/dz^3(W) = exp(-3*W)*(9+8*W+2*W^2)/(1+W)^5 and, in general, d^n/dz^n(W) = exp(-n*W)*R(n,W)/(1+W)^(2*n-1), where R(n,W) are the row polynomials of this triangle. - _Peter Bala_, Jul 22 2012

%H G. C. Greubel, <a href="/A042977/b042977.txt">Table of n, a(n) for the first 75 rows, flattened</a>

%H A. F. Beardon, <a href="https://doi.org/10.1007/s40315-021-00398-1">Winding Numbers, Unwinding Numbers, and the Lambert W Function</a>, Computational Methods and Function Theory, 2021.

%H George C. Greubel, <a href="https://arxiv.org/abs/1805.06968">On Szasz-Mirakyan-Jain Operators preserving exponential functions</a>, arXiv:1805.06968 [math.CA], 2018.

%H G. A. Kalugin and D. J. Jeffrey, <a href="https://arxiv.org/abs/1011.5940">Unimodal sequences show that Lambert is Bernstein</a>, C. R. Math. Rep. Acad. Sci. Canada Vol. 33 (2) pp. 50-56, 2011; arXiv:1011.5940 [math.CA], 2010.

%H Vladimir Kruchinin, <a href="http://arxiv.org/abs/1104.5065">Derivation of Bell Polynomials of the Second Kind</a>, arXiv:1104.5065 [math.CO], 2011.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/LambertW-Function.html">Lambert W-Function</a>

%F E.g.f.: (LambertW(exp(x)*(x+y*(1+x)^2))-x)/(1+x). - _Vladeta Jovovic_, Nov 19 2003

%F a(n) = B(n)*(1+x)^(2*n-1), where B(1)=1/(1+x) and for n>=2 B(n)=-n!*sum(m=1..n-1, (sum(j=1..m, (-1)^(m-j)*binomial(m,j)* sum(i=0..n, (j^(n-i)*binomial(j,i)*x^(m-i))/(n-i)!)))*B(m)/m!)/(1+x)^n). - _Vladimir Kruchinin_, Apr 07 2011

%F Recurrence equation: T(n+1,k) = -n*T(n,k-1) - (3*n-k-1)*T(n,k) + (k+1)*T(n,k+1). - _Peter Bala_, Jul 22 2012

%F T(n,m) = Sum_{j=0..m} C(2*n+1,m-j)*(Sum_{k=0..j} (n+k+1)^(n+j)*(-1)^(n+k)/((j-k)!*k!)). - _Vladimir Kruchinin_, Feb 20 2018

%e Triangle begins:

%e .n\k.|....1....W...W^2...W^3...W^4

%e ==================================

%e ..1..|....1

%e ..2..|...-2...-1

%e ..3..|....9....8.....2

%e ..4..|..-64..-79...-36....-6

%e ..5..|..625..974...622...192....24

%e ...

%e T(5,2) = -4*(-79) - 9*(-36) + 3*(-6) = 622.

%p # After Vladimir Kruchinin, for 0 <= m <= n:

%p T := (n, m) -> add(add((-1)^(k+n)*binomial(j,k)*binomial(2*n+1,m-j)*(k+n+1)^(n+j), k=0..j)/j!, j=0..m): seq(seq(T(n, k), k=0..n), n=0..7); # _Peter Luschny_, Feb 23 2018

%t Table[ Simplify[ (Evaluate[ D[ ProductLog[ z ], {z, n} ] ] /. ProductLog[ z ]->W)*z^n/W^n (1+W)^(2n-1) ], {n, 12} ] // TableForm

%t Flatten[ Table[ CoefficientList[ Simplify[ (Evaluate[D[ProductLog[z], {z, n}]] /. ProductLog[z] -> W) z^n / W^n (1 + W)^(2 n - 1)], W], {n, 8}]] (* _Michael Somos_, Jun 07 2012 *)

%t T[ n_, k_] := If[ n < 1 || k < 0, 0, Coefficient[ Simplify[(Evaluate[D[ProductLog[z], {z, n}]] /. ProductLog[z] -> W) z^n / W^n (1 + W)^(2 n - 1)], W, k]] (* _Michael Somos_, Jun 07 2012 *)

%o (Maxima)

%o B(n):=(if n=1 then 1/(1+x)*exp(-x) else -n!*sum((sum((-1)^(m-j)*binomial(m,j)*sum((j^(n-i)*binomial(j,i)*x^(m-i))/(n-i)!,i,0,n),j,1,m))*B(m)/m!,m,1,n-1)/(1+x)^n);

%o a(n):=B(n)*(1+x)^(2*n-1);

%o /* _Vladimir Kruchinin_, Apr 07 2011 */

%o (Maxima)

%o a(n):=if n=1 then 1 else (n-1)!*(sum((binomial(n+k-1, n-1)*sum(binomial(k, j)*(x+1)^(n-j-1)*sum(binomial(j, l)*(-1)^(l)*sum((l^(n+j-i-1)*binomial(l, i)*x^(j-i))/(n+j-i-1)!, i, 0, l), l, 1, j), j, 1, k)), k, 1, n-1));

%o T(n, k):=coeff(ratsimp(a(n)), x, k);

%o for n: 1 thru 12 do print(makelist(T(n, k), k, 0, n-1));

%o /* _Vladimir Kruchinin_, Oct 09 2012 */

%o T(n,m):=sum(binomial(2*n+1,m-j)*sum(((n+k+1)^(n+j)*(-1)^(n+k))/((j-k)!*k!),k,0,j),j,0,m); /* _Vladimir Kruchinin_, Feb 20 2018 */

%Y Cf. A013703 (twice row sums), A000444, A000525, A064781, A064785, A064782.

%Y First column A000169, main diagonal A000142, first subdiagonal A052582.

%Y Cf. A054589.

%K sign,tabl,look

%O 0,2

%A _Wouter Meeussen_

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 22 05:21 EDT 2024. Contains 372742 sequences. (Running on oeis4.)