The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A041025 Denominators of continued fraction convergents to sqrt(17). 27

%I #118 May 17 2024 10:19:16

%S 1,8,65,528,4289,34840,283009,2298912,18674305,151693352,1232221121,

%T 10009462320,81307919681,660472819768,5365090477825,43581196642368,

%U 354014663616769,2875698505576520,23359602708228929,189752520171407952,1541379764079492545

%N Denominators of continued fraction convergents to sqrt(17).

%C a(2*n+1) with b(2*n+1) := A041024(2*n+1), n >= 0, give all (positive integer) solutions to Pell equation b^2 - 17*a^2 = +1, a(2*n) with b(2*n) := A041024(2*n), n >= 0, give all (positive integer) solutions to Pell equation b^2 - 17*a^2 = -1 (cf. Emerson reference).

%C Bisection: a(2*n) = T(2*n+1,sqrt(17))/sqrt(17) = A078988(n), n >= 0 and a(2*n+1) = 8*S(n-1,66), n >= 0, with T(n,x), resp. S(n,x), Chebyshev's polynomials of the first, resp. second kind. S(-1,x)=0. See A053120, resp. A049310. - _Wolfdieter Lang_, Jan 10 2003

%C Sqrt(17) = 8/2 + 8/65 + 8/(65*4289) + 8/(4289*283009) + ... . - _Gary W. Adamson_, Dec 26 2007

%C For positive n, a(n) equals the permanent of the n X n tridiagonal matrix with 8's along the main diagonal and 1's along the superdiagonal and the subdiagonal. - _John M. Campbell_, Jul 08 2011

%C De Moivre's formula: a(n) = (r^n - s^n)/(r-s), for r > s, gives sequences with integers if r and s are conjugates. With r=4+sqrt(17) and s=4-sqrt(17), a(n+1)/a(n) converges to r=4+sqrt(17). - _Sture Sjöstedt_, Nov 11 2011

%C a(n) equals the number of words of length n on alphabet {0,1,...,8} avoiding runs of zeros of odd lengths. - _Milan Janjic_, Jan 28 2015

%C From _Michael A. Allen_, Feb 21 2023: (Start)

%C Also called the 8-metallonacci sequence; the g.f. 1/(1-k*x-x^2) gives the k-metallonacci sequence.

%C a(n) is the number of tilings of an n-board (a board with dimensions n X 1) using unit squares and dominoes (with dimensions 2 X 1) if there are 8 kinds of squares available. (End)

%H Vincenzo Librandi, <a href="/A041025/b041025.txt">Table of n, a(n) for n = 0..1000</a>

%H Michael A. Allen and Kenneth Edwards, <a href="https://www.fq.math.ca/Papers1/60-5/allen.pdf">Fence tiling derived identities involving the metallonacci numbers squared or cubed</a>, Fib. Q. 60:5 (2022) 5-17.

%H D. Birmajer, J. B. Gil, and M. D. Weiner, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL19/Gil/gil6.html">On the Enumeration of Restricted Words over a Finite Alphabet</a>, J. Int. Seq. 19 (2016) # 16.1.3, Example 8.

%H E. I. Emerson, <a href="http://www.fq.math.ca/Scanned/7-3/emerson.pdf">Recurrent Sequences in the Equation DQ^2=R^2+N</a>, Fib. Quart., 7 (1969), pp. 231-242, Thm. 1, p. 233.

%H Sergio Falcón and Ángel Plaza, <a href="http://dx.doi.org/10.1016/j.chaos.2006.10.022">The k-Fibonacci sequence and the Pascal 2-triangle</a>, Chaos, Solitons & Fractals 2007; 33(1): 38-49.

%H S. Falcón and Á. Plaza, <a href="http://dx.doi.org/10.1016/j.chaos.2007.03.007">On k-Fibonacci sequences and polynomials and their derivatives</a>, Chaos, Solitons & Fractals (2007).

%H Milan Janjic, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL18/Janjic/janjic63.html">On Linear Recurrence Equations Arising from Compositions of Positive Integers</a>, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.7.

%H Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>

%H Kai Wang, <a href="https://www.researchgate.net/publication/339487198_On_k-Fibonacci_Sequences_And_Infinite_Series_List_of_Results_and_Examples">On k-Fibonacci Sequences And Infinite Series List of Results and Examples</a>, 2020.

%H <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials</a>.

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (8,1).

%F G.f.: 1/(1 - 8*x - x^2).

%F a(n) = ((-i)^n)*S(n, 8*i), with S(n, x) := U(n, x/2) Chebyshev's polynomials of the second kind and i^2 = -1. See A049310.

%F a(n) = F(n, 8), the n-th Fibonacci polynomial evaluated at x=8. - _T. D. Noe_, Jan 19 2006

%F From _Sergio Falcon_, Sep 24 2007: (Start)

%F a(n) = ((4 + sqrt(17))^n - (4 - sqrt(17))^n)/(2*sqrt(17));

%F a(n) = Sum_{i=0..floor((n-1)/2)} binomial(n-1-i,i)*8^(n-1-2i). (End)

%F Let T be the 2 X 2 matrix [0, 1; 1, 8]. Then T^n * [1, 0] = [a(n-2), a(n-1)]. - _Gary W. Adamson_, Dec 26 2007

%F a(n) = 8*a(n-1) + a(n-2), n > 1; a(0)=1, a(1)=8. - _Philippe Deléham_, Nov 20 2008

%F a(p) == ((p-1)/2)) (mod p) for odd primes p. - _Gary W. Adamson_, Feb 22 2009

%F Sum_{n>=0} (-1)^n/(a(n)*a(n+1)) = sqrt(17) - 4. - _Vladimir Shevelev_, Feb 23 2013

%F G.f.: x/(1 - 8*x - x^2) = Sum_{n >= 0} x^n *( Product_{k = 1..n} (m*k + 8 - m + x)/(1 + m*k*x) ) for arbitrary m (a telescoping series). - _Peter Bala_, May 08 2024

%t CoefficientList[Series[1/(-z^2 - 8 z + 1), {z, 0, 200}], z] (* _Vladimir Joseph Stephan Orlovsky_, Jun 23 2011 *)

%t Denominator[Convergents[Sqrt[17],30]] (* _Harvey P. Dale_, Aug 15 2011 *)

%t LinearRecurrence[{8,1}, {1,8}, 50] (* _Sture Sjöstedt_, Nov 11 2011 *)

%o (Sage) [lucas_number1(n,8,-1) for n in range(1, 20)] # _Zerinvary Lajos_, Apr 25 2009

%o (Magma) I:=[1, 8]; [n le 2 select I[n] else 8*Self(n-1)+Self(n-2): n in [1..25]]; // _Vincenzo Librandi_, Feb 23 2013

%o (PARI) Vec(1/(1-8*x-x^2)+O(x^99)) \\ _Charles R Greathouse IV_, Dec 09 2014

%Y Cf. A041024, A040012.

%Y Cf. A000045, A000129, A006190, A001076, A052918, A005668, A054413, A243399.

%Y Row n=8 of A073133, A172236 and A352361.

%Y Cf. A099369 (squares).

%K nonn,cofr,easy

%O 0,2

%A _N. J. A. Sloane_

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 8 17:52 EDT 2024. Contains 373227 sequences. (Running on oeis4.)