The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A036969 Triangle read by rows: T(n,k) = T(n-1,k-1) + k^2*T(n-1,k), 1 < k <= n, T(n,1) = 1. 16

%I #141 May 15 2024 10:44:44

%S 1,1,1,1,5,1,1,21,14,1,1,85,147,30,1,1,341,1408,627,55,1,1,1365,13013,

%T 11440,2002,91,1,1,5461,118482,196053,61490,5278,140,1,1,21845,

%U 1071799,3255330,1733303,251498,12138,204,1,1,87381,9668036,53157079,46587905

%N Triangle read by rows: T(n,k) = T(n-1,k-1) + k^2*T(n-1,k), 1 < k <= n, T(n,1) = 1.

%C Or, triangle of central factorial numbers T(2n,2k) (in Riordan's notation).

%C Can be used to calculate the Bernoulli numbers via the formula B_2n = (1/2)*Sum_{k = 1..n} (-1)^(k+1)*(k-1)!*k!*T(n,k)/(2*k+1). E.g., n = 1: B_2 = (1/2)*1/3 = 1/6. n = 2: B_4 = (1/2)*(1/3 - 2/5) = -1/30. n = 3: B_6 = (1/2)*(1/3 - 2*5/5 + 2*6/7) = 1/42. - _Philippe Deléham_, Nov 13 2003

%C From _Peter Bala_, Sep 27 2012: (Start)

%C Generalized Stirling numbers of the second kind. T(n,k) is equal to the number of partitions of the set {1,1',2,2',...,n,n'} into k disjoint nonempty subsets V1,...,Vk such that, for each 1 <= j <= k, if i is the least integer such that either i or i' belongs to Vj then {i,i'} is a subset of Vj. An example is given below.

%C Thus T(n,k) may be thought of as a two-colored Stirling number of the second kind. See Matsumoto and Novak, who also give another combinatorial interpretation of these numbers. (End)

%D L. Carlitz, A conjecture concerning Genocchi numbers. Norske Vid. Selsk. Skr. (Trondheim) 1971, no. 9, 4 pp. [The triangle appears on page 2.]

%D J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217.

%D R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.8.

%H Vincenzo Librandi, <a href="/A036969/b036969.txt"> Rows n = 1..100 of triangle, flattened</a>

%H Thomas Browning, <a href="https://arxiv.org/abs/2010.13256">Counting Parabolic Double Cosets in Symmetric Groups</a>, arXiv:2010.13256 [math.CO], 2020.

%H P. L. Butzer, M. Schmidt, E. L. Stark and L. Vogt. <a href="http://dx.doi.org/10.1080/01630568908816313">Central factorial numbers; their main properties and some applications</a>, Num. Funct. Anal. Optim., 10 (1989) 419-488.

%H José L. Cereceda, <a href="https://arxiv.org/abs/2405.05268">Sums of powers of integers and the sequence A304330</a>, arXiv:2405.05268 [math.GM], 2024. See p. 2.

%H M. W. Coffey and M. C. Lettington, <a href="http://arxiv.org/abs/1510.05402">On Fibonacci Polynomial Expressions for Sums of mth Powers, their implications for Faulhaber's Formula and some Theorems of Fermat</a>, arXiv:1510.05402 [math.NT], 2015.

%H D. Dumont, <a href="http://dx.doi.org/10.1215/S0012-7094-74-04134-9">Interprétations combinatoires des nombres de Genocchi</a>, Duke Math. J., 41 (1974), 305-318.

%H D. Dumont, <a href="/A001469/a001469_3.pdf">Interprétations combinatoires des nombres de Genocchi</a>, Duke Math. J., 41 (1974), 305-318. (Annotated scanned copy)

%H Qi Fang, Ya-Nan Feng, and Shi-Mei Ma, <a href="https://arxiv.org/abs/2202.13978">Alternating runs of permutations and the central factorial numbers</a>, arXiv:2202.13978 [math.CO], 2022.

%H F. G. Garvan, <a href="http://qseries.org/fgarvan/papers/hspt.pdf">Higher-order spt functions</a>, Adv. Math. 228 (2011), no. 1, 241-265. - From _N. J. A. Sloane_, Jan 02 2013

%H P. A. MacMahon, <a href="https://doi.org/10.1112/plms/s2-19.1.75">Divisors of numbers and their continuations in the theory of partitions</a>, Proc. London Math. Soc., (2) 19 (1919), 75-113; Coll. Papers II, pp. 303-341.

%H S. Matsumoto and J. Novak, <a href="http://arxiv.org/abs/0905.1992">Jucys-Murphy Elements and Unitary Matrix Integrals</a> arXiv.0905.1992 [math.CO], 2009-2012.

%H B. K. Miceli, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL14/Miceli/miceli4.html">Two q-Analogues of Poly-Stirling Numbers</a>, J. Integer Seq., 14 (2011), 11.9.6.

%H John Riordan, <a href="/A002720/a002720_2.pdf">Letter, Apr 28 1976.</a>

%H John Riordan, <a href="/A001850/a001850_2.pdf">Letter, Jul 06 1978</a>

%H Richard P. Stanley, <a href="http://www-math.mit.edu/~rstan/transparencies/hooks.pdf">Hook Lengths and Contents</a>.

%F T(n,k) = A156289(n,k)/A001147(k). - _Peter Bala_, Feb 21 2011

%F From _Peter Bala_, Oct 14 2011: (Start)

%F O.g.f.: Sum_{n >= 1} x^n*t^n/Product_{k = 1..n} (1 - k^2*t^2) = x*t + (x + x^2)*t^2 + (x + 5*x^2 + x^3)*t^3 + ....

%F Define polynomials x^[2*n] = Product_{k = 0..n-1} (x^2 - k^2). This triangle gives the coefficients in the expansion of the monomials x^(2*n) as a linear combination of x^[2*m], 1 <= m <= n. For example, row 4 gives x^8 = x^[2] + 21*x^[4] + 14*x^[6] + x^[8].

%F A008955 is a signed version of the inverse.

%F The n-th row sum = A135920(n). (End)

%F T(n,k) = (2/(2*k)!)*Sum_{j=0..k-1} (-1)^(j+k+1) * binomial(2*k,j+k+1) * (j+1)^(2*n). This formula is valid for n >= 0 and 0 <= k <= n. - _Peter Luschny_, Feb 03 2012

%F From _Peter Bala_, Sep 27 2012: (Start)

%F Let E(x) = cosh(sqrt(2*x)) = Sum_{n >= 0} x^n/((2*n)!/2^n). A generating function for the triangle is E(t*(E(x)-1)) = 1 + t*x + t*(1 + t)*x^2/6 + t*(1 + 5*t + t^2)*x^3/90 + ..., where the sequence of denominators [1, 1, 6, 90, ...] is given by (2*n)!/2^n. Cf. A008277 which has generating function exp(t*(exp(x)-1)). An e.g.f. is E(t*(E(x^2/2)-1)) = 1 + t*x^2/2! + t*(1 + t)*x^4/4! + t*(1 + 5*t + t^2)*x^6/6! + ....

%F Put c(n) := (2*n)!/2^n. The column k generating function is (1/c(k))*(E(x)-1)^k = Sum_{n >= k} T(n,k)*x^n/c(n). The inverse array is A204579.

%F The production array begins:

%F 1, 1;

%F 0, 4, 1;

%F 0, 0, 9, 1;

%F 0, 0, 0, 16, 1;

%F ... (End)

%F x^n = Sum_{k=1..n} T(n,k)*Product_{i=0..k-1} (x-i^2), see Stanley link. - _Michel Marcus_, Nov 19 2014; corrected by _Kolosov Petro_, Jul 26 2023

%F From _Kolosov Petro_, Jul 26 2023: (Start)

%F T(n,k) = (1/(2*k)!) * Sum_{j=0..2k} binomial(2k, j)*(-1)^j*(k - j)^(2n).

%F T(n,k) = (1/(k*(2k-1)!)) * Sum_{j=0..k} (-1)^(k-j)*binomial(2k, k-j)*j^(2n).

%F (End)

%e Triangle begins:

%e 1;

%e 1, 1;

%e 1, 5, 1;

%e 1, 21, 14, 1;

%e 1, 85, 147, 30, 1;

%e ...

%e T(3,2) = 5: The five set partitions into two sets are {1,1',2,2'}{3,3'}, {1,1',3,3'}{2,2'}, {1,1'}{2,2',3,3'}, {1,1',3}{2,2',3'} and {1,1',3'}{2,2',3}.

%p A036969 := proc(n,k) local j; 2*add(j^(2*n)*(-1)^(k-j)/((k-j)!*(k+j)!),j=1..k); end;

%t t[n_, k_] := 2*Sum[j^(2*n)*(-1)^(k-j)/((k-j)!*(k+j)!), {j, 1, k}]; Flatten[ Table[t[n, k], {n, 1, 10}, {k, 1, n}]] (* _Jean-François Alcover_, Oct 11 2011 *)

%t t1[n_, k_] := (1/(2 k)!) * Sum[Binomial[2 k, j]*(-1)^j*(k - j)^(2 n), {j, 0, 2 k}]; Column[Table[t1[n, k], {n, 1, 10}, {k, 1, n}]] (* _Kolosov Petro_ ,Jul 26 2023 *)

%o (PARI) T(n,k)=if(1<k && k<=n, T(n-1,k-1) + k^2*T(n-1,k),k==1) \\ for illustrative purpose, not efficient ; _M. F. Hasler_, Feb 03 2012

%o (PARI) T(n,k)=2*sum(j=1,k,(-1)^(k-j)*j^(2*n)/(k-j)!/(k+j)!) \\ _M. F. Hasler_, Feb 03 2012

%o (Sage)

%o def A036969(n,k) : return (2/factorial(2*k))*add((-1)^j*binomial(2*k,j)*(k-j)^(2*n) for j in (0..k))

%o for n in (1..7) : print([A036969(n,k) for k in (1..n)]) # Peter Luschny, Feb 03 2012

%o (Haskell)

%o a036969 n k = a036969_tabl !! (n-1) (k-1)

%o a036969_row n = a036969_tabl !! (n-1)

%o a036969_tabl = iterate f [1] where

%o f row = zipWith (+)

%o ([0] ++ row) (zipWith (*) (tail a000290_list) (row ++ [0]))

%o -- _Reinhard Zumkeller_, Feb 18 2013

%Y Diagonals are A002450, A002451, A000330 and A060493.

%Y Transpose of A008957. Cf. A008955, A008956, A156289, A135920 (row sums), A204579 (inverse), A000290.

%K nonn,easy,nice,tabl,changed

%O 1,5

%A _N. J. A. Sloane_

%E More terms from _Vladeta Jovovic_, Apr 16 2000

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 22 05:21 EDT 2024. Contains 372742 sequences. (Running on oeis4.)