The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A034870 Even-numbered rows of Pascal's triangle. 24

%I #91 Sep 08 2022 08:44:52

%S 1,1,2,1,1,4,6,4,1,1,6,15,20,15,6,1,1,8,28,56,70,56,28,8,1,1,10,45,

%T 120,210,252,210,120,45,10,1,1,12,66,220,495,792,924,792,495,220,66,

%U 12,1,1,14,91,364,1001,2002,3003,3432,3003,2002,1001,364,91,14,1

%N Even-numbered rows of Pascal's triangle.

%C The sequence of row lengths of this array is [1,3,5,7,9,11,13,...]= A005408(n), n>=0.

%C Equals X^n * [1,0,0,0,...] where X = an infinite tridiagonal matrix with (1,1,1,...) in the main and subsubdiagonal and (2,2,2,...) in the main diagonal. X also = a triangular matrix with (1,2,1,0,0,0,...) in each column. - _Gary W. Adamson_, May 26 2008

%C a(n,m) has the following interesting combinatoric interpretation. Let s(n,m) equal the set of all base-4, n-digit numbers with n-m more 1-digits than 2-digits. For example s(2,1) = {10,01,13,31} (note that numbers like 1 are left-padded with 0's to ensure that they have 2 digits). Notice that #s(2,1) = a(2,1) with # indicating cardinality. This is true in general. a(n,m)=#s(n,m). In words, a(n,m) gives the number of n-digit, base-4 numbers with n-m more 1 digits than 2 digits. A proof is provided in the Links section. - _Russell Jay Hendel_, Jun 23 2015

%H Reinhard Zumkeller, <a href="/A034870/b034870.txt">Rows n=0..150 of triangle, flattened</a>

%H P. Bala, <a href="/A260492/a260492.pdf">Notes on generalized Riordan arrays</a>

%H E. H. M. Brietzke, <a href="http://dx.doi.org/10.1016/j.disc.2007.08.050">An identity of Andrews and a new method for the Riordan array proof of combinatorial identities</a>, Discrete Math., 308 (2008), 4246-4262.

%H Russell Jay Hendel, <a href="/A034870/a034870_1.txt">Proof that a(n,m) gives the number of n-digit, base-4 numbers with n-m more 1-digits than 2-digits.</a>

%H Wolfdieter Lang, <a href="/A034870/a034870.txt">First 9 rows</a>.

%H Franck Ramaharo, <a href="https://arxiv.org/abs/1802.07701">Statistics on some classes of knot shadows</a>, arXiv:1802.07701 [math.CO], 2018.

%H Franck Ramaharo, <a href="https://arxiv.org/abs/2002.06672">A bracket polynomial for 2-tangle shadows</a>, arXiv:2002.06672 [math.CO], 2020.

%H <a href="/index/Pas#Pascal">Index entries for triangles and arrays related to Pascal's triangle</a>

%F T(n, m) = binomial(2*n, m), 0<= m <= 2*n, 0<=n, else 0.

%F G.f. for column m=2*k sequence: (x^k)*Pe(k, x)/(1-x)^(2*k+1), k>=0; for column m=2*k-1 sequence (x^k)*Po(k, x)/(1-x)^(2*k), k>=1, with the row polynomials Pe(k, x) := sum(A091042(k, m)*x^m, m=0..k) and Po(k, x) := 2*sum(A091044(k, m)*x^m, m=0..k-1); see also triangle A091043.

%F From _Paul D. Hanna_, Apr 18 2012: (Start)

%F Let A(x) be the g.f. of the flattened sequence, then:

%F G.f.: A(x) = Sum_{n>=0} x^(n^2) * (1+x)^(2*n).

%F G.f.: A(x) = Sum_{n>=0} x^n*(1+x)^(2*n) * Product_{k=1..n} (1 - (1+x)^2*x^(4*k-3)) / (1 - (1+x)^2*x^(4*k-1)).

%F G.f.: A(x) = 1/(1 - x*(1+x)^2/(1 + x*(1-x^2)*(1+x)^2/(1 - x^5*(1+x)^2/(1 + x^3*(1-x^4)*(1+x)^2/(1 - x^9*(1+x)^2/(1 + x^5*(1-x^6)*(1+x)^2/(1 - x^13*(1+x)^2/(1 + x^7*(1-x^8)*(1+x)^2/(1 - ...))))))))), a continued fraction.

%F (End)

%F From _Peter Bala_, Jul 14 2015: (Start)

%F Denote this array by P. Then P * transpose(P) is the square array ( binomial(2*n + 2*k, 2*k) )n,k>=0, which, read by antidiagonals, is A086645.

%F Transpose(P) is a generalized Riordan array (1, (1 + x)^2) as defined in the Bala link.

%F Let p(x) = (1 + x)^2. P^2 gives the coefficients in the expansion of the polynomials ( p(p(x)) )^n, P^3 gives the coefficients in the expansion of the polynomials ( p(p(p(x))) )^n and so on.

%F Row sums are 2^(2*n); row sums of P^2 are 5^(2*n), row sums of P^3 are 26^(2*n). In general, the row sums of P^k, k = 0,1,2,..., are equal to A003095(k)^(2*n).

%F The signed version of this array ( (-1)^k*binomial(2*n,k) )n,k>=0 is a left-inverse for A034839.

%F A034839 * P = A080928. (End)

%F T(n, k) = GegenbauerC(m, -n, -1)) where m = k if k<n else 2*n-k. - _Peter Luschny_, May 08 2016

%F G.f.: 1/(1-x*(y+1)^2). - _Vladimir Kruchinin_, Nov 22 2020

%e Triangle begins:

%e 1;

%e 1, 2, 1;

%e 1, 4, 6, 4, 1;

%e 1, 6, 15, 20, 15, 6, 1;

%e 1, 8, 28, 56, 70, 56, 28, 8, 1;

%e 1, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1;

%e 1, 12, 66, 220, 495, 792, 924, 792, 495, 220, 66, 12, 1;

%p T := (n,k) -> simplify(GegenbauerC(`if`(k<n,k,2*n-k),-n, -1));

%p for n from 0 to 6 do seq(T(n,k),k=0..2*n) od; # _Peter Luschny_, May 08 2016

%t Flatten[Table[Binomial[n,k],{n,0,20,2},{k,0,n}]] (* _Harvey P. Dale_, Dec 15 2014 *)

%o (Haskell)

%o a034870 n k = a034870_tabf !! n !! k

%o a034870_row n = a034870_tabf !! n

%o a034870_tabf = map a007318_row [0, 2 ..]

%o -- _Reinhard Zumkeller_, Apr 19 2012, Apr 02 2011

%o (Magma) /* As triangle: */ [[Binomial(n,k): k in [0..n]]: n in [0.. 15 by 2]]; // _Vincenzo Librandi_, Jul 16 2015

%o (Maxima)

%o taylor(1/(1-x*(y+1)^2),x,0,10,y,0,10); /* _Vladimir Kruchinin_, Nov 22 2020 */

%o (Sage) flatten([[binomial(2*n, k) for k in (0..2*n)] for n in (0..12)]) # _G. C. Greubel_, Mar 18 2022

%Y Cf. A007318, A034871.

%Y Cf. A000302 (row sums, powers of 4), alternating row sums are 0, except for n=0 which gives 1.

%Y Cf. A003095, A034839, A080928, A086645.

%K nonn,tabf,easy

%O 0,3

%A _N. J. A. Sloane_

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 30 09:53 EDT 2024. Contains 372967 sequences. (Running on oeis4.)