The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A030221 Chebyshev even-indexed U-polynomials evaluated at sqrt(7)/2. 33

%I #86 Mar 28 2024 21:54:16

%S 1,6,29,139,666,3191,15289,73254,350981,1681651,8057274,38604719,

%T 184966321,886226886,4246168109,20344613659,97476900186,467039887271,

%U 2237722536169,10721572793574,51370141431701,246129134364931,1179275530392954,5650248517599839

%N Chebyshev even-indexed U-polynomials evaluated at sqrt(7)/2.

%C a(n) = L(n,-5)*(-1)^n, where L is defined as in A108299; see also A004253 for L(n,+5). - _Reinhard Zumkeller_, Jun 01 2005

%C General recurrence is a(n) = (a(1)-1)*a(n-1) - a(n-2), a(1) >= 4; lim_{n->oo} a(n) = x*(k*x+1)^n, k =(a(1)-3), x=(1+sqrt((a(1)+1)/(a(1)-3)))/2. Examples in OEIS: a(1)=4 gives A002878. a(1)=5 gives A001834. a(1)=6 gives the present sequence. a(1)=7 gives A002315. a(1)=8 gives A033890. a(1)=9 gives A057080. a(1)=10 gives A057081. - _Ctibor O. Zizka_, Sep 02 2008

%C The primes in this sequence are 29, 139, 3191, 15289, 350981, 1681651, ... - _Ctibor O. Zizka_, Sep 02 2008

%C Inverse binomial transform of A030240. - _Philippe Deléham_, Nov 19 2009

%C For positive n, a(n) equals the permanent of the (2n)X(2n) matrix with sqrt(7)'s along the main diagonal, and i's along the superdiagonal and the subdiagonal (i is the imaginary unit). - _John M. Campbell_, Jul 08 2011

%C The aerated sequence (b(n))n>=1 = [1, 0, 6, 0, 29, 0, 139, 0, ...] is a fourth-order linear divisibility sequence; that is, if n | m then b(n) | b(m). It is the case P1 = 0, P2 = -3, Q = -1 of the 3-parameter family of divisibility sequences found by Williams and Guy. See A100047 for a connection with Chebyshev polynomials. - _Peter Bala_, Mar 22 2015

%C From _Wolfdieter Lang_, Oct 26 2020: (Start)

%C ((-1)^n)*a(n) = X(n) = ((-1)^n)*(S(n, 5) + S(n-1, 5)) and Y(n) = X(n-1) gives all integer solutions (modulo sign flip between X and Y) of X^2 + Y^2 + 5*X*Y = +7, for n = -oo..+oo, with Chebyshev S polynomials (see A049310), with S(-1, x) = 0, and S(-n, x) = - S(n-2, x), for n >= 2.

%C This binary indefinite quadratic form of discriminant 21, representing 7, has only this family of proper solutions (modulo sign flip), and no improper ones.

%C This comment is inspired by a paper by Robert K. Moniot (private communication). See his Oct 04 2020 comment in A027941 related to the case of x^2 + y^2 - 3*x*y = -1 (special Markov solutions). (End)

%H G. C. Greubel, <a href="/A030221/b030221.txt">Table of n, a(n) for n = 0..1000</a>

%H Marco Abrate, Stefano Barbero, Umberto Cerruti, and Nadir Murru, <a href="https://www.emis.de/journals/INTEGERS/papers/p38/p38.Abstract.html">Polynomial sequences on quadratic curves</a>, Integers, Vol. 15, 2015, #A38.

%H K. Andersen, L. Carbone, and D. Penta, <a href="https://pdfs.semanticscholar.org/8f0c/c3e68d388185129a56ed73b5d21224659300.pdf">Kac-Moody Fibonacci sequences, hyperbolic golden ratios, and real quadratic fields</a>, Journal of Number Theory and Combinatorics, Vol 2, No. 3 pp 245-278, 2011. See Section 9.

%H K. Dilcher and K. B. Stolarsky, <a href="http://www.maa.org/programs/maa-awards/writing-awards/a-pascal-type-triangle-characterizing-twin-primes">A Pascal-type triangle characterizing twin primes</a>, Amer. Math. Monthly, 112 (2005), 673-681. (see page 678)

%H Alex Fink, Richard K. Guy, and Mark Krusemeyer, <a href="https://doi.org/10.11575/cdm.v3i2.61940">Partitions with parts occurring at most thrice</a>, Contributions to Discrete Mathematics, Vol 3, No 2 (2008), pp. 76-114. See Section 13.

%H Taras Goy and Mark Shattuck, <a href="https://doi.org/10.2478/amsil-2023-0027">Determinants of Toeplitz-Hessenberg Matrices with Generalized Leonardo Number Entries</a>, Ann. Math. Silesianae (2023). See p. 18.

%H Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>.

%H Wolfdieter Lang, <a href="http://www.fq.math.ca/Scanned/38-5/lang.pdf">On polynomials related to powers of the generating function of Catalan's numbers</a>, Fib. Quart. 38 (2000) 408-419. Eq.(44), rhs, m=6.

%H Ioana-Claudia Lazăr, <a href="https://arxiv.org/abs/1904.06555">Lucas sequences in t-uniform simplicial complexes</a>, arXiv:1904.06555 [math.GR], 2019.

%H Donatella Merlini and Renzo Sprugnoli, <a href="https://doi.org/10.1016/j.disc.2016.08.017">Arithmetic into geometric progressions through Riordan arrays</a>, Discrete Mathematics 340.2 (2017): 160-174.

%H H. C. Williams and R. K. Guy, <a href="http://dx.doi.org/10.1142/S1793042111004587">Some fourth-order linear divisibility sequences</a>, Intl. J. Number Theory 7 (5) (2011) 1255-1277.

%H H. C. Williams and R. K. Guy, <a href="http://www.emis.de/journals/INTEGERS/papers/a17self/a17self.Abstract.html">Some Monoapparitic Fourth Order Linear Divisibility Sequences</a>, Integers, Volume 12A (2012) The John Selfridge Memorial Volume.

%H <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials.</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (5,-1).

%F a(n) = 5*a(n-1) - a(n-2), a(-1)=-1, a(0)=1.

%F a(n) = U(2*n, sqrt(7)/2).

%F G.f.: (1+x)/(x^2-5*x+1).

%F a(n) = A004254(n) + A004254(n+1).

%F a(n) ~ (1/2 + (1/6)*sqrt(21))*((1/2)*(5 + sqrt(21)))^n. - Joe Keane (jgk(AT)jgk.org), May 16 2002

%F Let q(n, x) = Sum_{i=0..n} x^(n-i)*binomial(2*n-i, i); then a(n) = (-1)^n*q(n, -7). - _Benoit Cloitre_, Nov 10 2002

%F A054493(2*n) = a(n)^2 for all n in Z. - _Michael Somos_, Jan 22 2017

%F a(n) = -a(-1-n) for all n in Z. - _Michael Somos_, Jan 22 2017

%F 0 = -7 + a(n)*(+a(n) - 5*a(n+1)) + a(n+1)*(+a(n+1)) for all n in Z. - _Michael Somos_, Jan 22 2017

%F a(n) = S(n, 5) + S(n-1, 5) = S(2*n, sqrt(7) (see above in terms of U), for n >= 0 with S(-1, 5) = 0, where the coefficients of the Chebyshev S polynomials are given in A049310. - _Wolfdieter Lang_, Oct 26 2020

%e G.f. = 1 + 6*x + 29*x^2 + 139*x^3 + 666*x^4 + 3191*x^5 + 15289*x^6 + ...

%p A030221 := proc(n)

%p option remember;

%p if n <= 1 then

%p op(n+1,[1,6]);

%p else

%p 5*procname(n-1)-procname(n-2) ;

%p end if;

%p end proc: # _R. J. Mathar_, Apr 30 2017

%t t[n_, k_?EvenQ] := I^k*Binomial[n-k/2, k/2]; t[n_, k_?OddQ] := -I^(k-1)*Binomial[n+(1-k)/2-1, (k-1)/2]; l[n_, x_] := Sum[t[n, k]*x^(n-k), {k, 0, n}]; a[n_] := (-1)^n*l[n, -5]; Table[a[n], {n, 0, 20}] (* _Jean-François Alcover_, Jul 05 2013, after _Reinhard Zumkeller_ *)

%t a[ n_] := ChebyshevU[2 n, Sqrt[7]/2]; (* _Michael Somos_, Jan 22 2017 *)

%o (Sage) [(lucas_number2(n,5,1)-lucas_number2(n-1,5,1))/3 for n in range(1,22)] # _Zerinvary Lajos_, Nov 10 2009

%o (Magma) I:=[1,6]; [n le 2 select I[n] else 5*Self(n-1)-Self(n-2): n in [1..30]]; // _Vincenzo Librandi_, Mar 22 2015

%o (PARI) {a(n) = simplify(polchebyshev(2*n, 2, quadgen(28)/2))}; /* _Michael Somos_, Jan 22 2017 */

%Y Cf. A004253, A004254, A100047, A054493 (partial sums), A049310, A003501 (first differences), A299109 (subsequence of primes).

%K nonn,easy

%O 0,2

%A _Wolfdieter Lang_

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 14 12:38 EDT 2024. Contains 372533 sequences. (Running on oeis4.)