The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A029653 Numbers in (2,1)-Pascal triangle (by row). 57

%I #120 Feb 28 2023 17:02:18

%S 1,2,1,2,3,1,2,5,4,1,2,7,9,5,1,2,9,16,14,6,1,2,11,25,30,20,7,1,2,13,

%T 36,55,50,27,8,1,2,15,49,91,105,77,35,9,1,2,17,64,140,196,182,112,44,

%U 10,1,2,19,81,204,336,378,294,156,54,11,1,2,21,100,285

%N Numbers in (2,1)-Pascal triangle (by row).

%C Reverse of A029635. Row sums are A003945. Diagonal sums are Fibonacci(n+2) = Sum_{k=0..floor(n/2)} (2n-3k)*C(n-k,n-2k)/(n-k). - _Paul Barry_, Jan 30 2005

%C Riordan array ((1+x)/(1-x), x/(1-x)). The signed triangle (-1)^(n-k)T(n,k) or ((1-x)/(1+x), x/(1+x)) is the inverse of A055248. Row sums are A003945. Diagonal sums are F(n+2). - _Paul Barry_, Feb 03 2005

%C Row sums = A003945: (1, 3, 6, 12, 24, 48, 96, ...) = (1, 3, 7, 15, 31, 63, 127, ...) - (0, 0, 1, 3, 7, 15, 31, ...); where (1, 3, 7, 15, ...) = A000225. - _Gary W. Adamson_, Apr 22 2007

%C Triangle T(n,k), read by rows, given by (2,-1,0,0,0,0,0,0,0,...) DELTA (1,0,0,0,0,0,0,0,0,...) where DELTA is the operator defined in A084938. - _Philippe Deléham_, Nov 17 2011

%C A029653 is jointly generated with A208510 as an array of coefficients of polynomials v(n,x): initially, u(1,x)=v(1,x)=1; for n>1, u(n,x)=u(n-1,x)+x*v(n-1)x and v(n,x)=u(n-1,x)+x*v(n-1,x)+1. See the Mathematica section. - _Clark Kimberling_, Feb 28 2012

%C For a closed-form formula for arbitrary left and right borders of Pascal like triangle, see A228196. - _Boris Putievskiy_, Aug 18 2013

%C For a closed-form formula for generalized Pascal's triangle, see A228576. - _Boris Putievskiy_, Sep 04 2013

%C The n-th row polynomial is (2 + x)*(1 + x)^(n-1) for n >= 1. More generally, the n-th row polynomial of the Riordan array ( (1-a*x)/(1-b*x), x/(1-b*x) ) is (b - a + x)*(b + x)^(n-1) for n >= 1. - _Peter Bala_, Feb 25 2018

%H Reinhard Zumkeller, <a href="/A029653/b029653.txt">Rows n = 0..125 of triangle, flattened</a>

%H Mohammad K. Azarian, <a href="http://www.m-hikari.com/ijcms/ijcms-2012/45-48-2012/azarianIJCMS45-48-2012.pdf">Identities Involving Lucas or Fibonacci and Lucas Numbers as Binomial Sums</a>, International Journal of Contemporary Mathematical Sciences, Vol. 7, No. 45, 2012, pp. 2221-2227.

%H Paul Barry, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL16/Barry2/barry231.html">A Note on a Family of Generalized Pascal Matrices Defined by Riordan Arrays</a>, Journal of Integer Sequences, 16 (2013), #13.5.4.

%H Hacene Belbachir and Athmane Benmezai, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL15/Belbachir/bel22.html">Expansion of Fibonacci and Lucas Polynomials: An Answer to Prodinger's Question</a>, Journal of Integer Sequences, Vol. 15 (2012), #12.7.6.

%H B. A. Bondarenko, <a href="http://www.fq.math.ca/pascal.html">Generalized Pascal Triangles and Pyramids</a> (in Russian), FAN, Tashkent, 1990, ISBN 5-648-00738-8. English translation published by Fibonacci Association, Santa Clara Univ., Santa Clara, CA, 1993; see p. 39.

%H H. Hosoya, <a href="http://dx.doi.org/10.1023/A:1019192302062">Pascal's triangle, non-adjacent numbers and D-dimensional atomic orbitals</a>, J. Math. Chemistry, vol. 23, 1998, 169-178.

%H M. Janjic and B. Petkovic, <a href="http://arxiv.org/abs/1301.4550">A Counting Function</a>, arXiv preprint arXiv:1301.4550 [math.CO], 2013. - From _N. J. A. Sloane_, Feb 13 2013

%H M. Janjic and B. Petkovic, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL17/Janjic/janjic45.html">A Counting Function Generalizing Binomial Coefficients and Some Other Classes of Integers</a>, J. Int. Seq. 17 (2014) # 14.3.5

%H Huyile Liang, Yanni Pei, and Yi Wang, <a href="https://arxiv.org/abs/2302.11856">Analytic combinatorics of coordination numbers of cubic lattices</a>, arXiv:2302.11856 [math.CO], 2023. See p. 8.

%H Mark C. Wilson, <a href="http://emis.impa.br/EMIS/journals/DMTCS/pdfpapers/dmAD0129.pdf">Asymptotics for generalized Riordan arrays.</a> International Conference on Analysis of Algorithms DMTCS proc. AD. Vol. 323. 2005.

%F T(n, k) = C(n-2, k-1) + C(n-2, k) + C(n-1, k-1) + C(n-1, k) except for n=0.

%F G.f.: (1 + x + y + xy)/(1 - y - xy). - _Ralf Stephan_, May 17 2004

%F T(n, k) = (2n-k)*binomial(n, n-k)/n, n, k > 0. - _Paul Barry_, Jan 30 2005

%F Sum_{k=0..n} T(n, k)*x^k gives A003945-A003954 for x = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. - _Philippe Deléham_, Jul 10 2005

%F T(n, k) = C(n-1, k) + C(n, k). - _Philippe Deléham_, Jul 10 2005

%F Equals A097806 * A007318, i.e., the pairwise operator * Pascal's Triangle as infinite lower triangular matrices. - _Gary W. Adamson_, Apr 22 2007

%F From _Peter Bala_, Dec 27 2014: (Start)

%F exp(x) * e.g.f. for row n = e.g.f. for diagonal n. For example, for n = 3 we have exp(x)*(2 + 5*x + 4*x^2/2! + x^3/3!) = 2 + 7*x + 16*x^2/2! + 30*x^3/3! + 50*x^4/4! + .... The same property holds more generally for Riordan arrays of the form ( f(x), x/(1 - x) ).

%F Let M denote the lower unit triangular array with 1's on the main diagonal and 1's everywhere else below the main diagonal except for the first column which consists of the sequence [1,2,2,2,...]. For k = 0,1,2,... define M(k) to be the lower unit triangular block array

%F /I_k 0\

%F \ 0 M/ having the k X k identity matrix I_k as the upper left block; in particular, M(0) = M. Then the present triangle equals the infinite product M(0)*M(1)*M(2)*... (which is clearly well-defined). See the Example section. (End)

%e The triangle T(n,k) begins:

%e n\k 0 1 2 3 4 5 6 7 8 9 10 ...

%e 0: 1

%e 1: 2 1

%e 2: 2 3 1

%e 3: 2 5 4 1

%e 4: 2 7 9 5 1

%e 5: 2 9 16 14 6 1

%e 6: 2 11 25 30 20 7 1

%e 7: 2 13 36 55 50 27 8 1

%e 8: 2 15 49 91 105 77 35 9 1

%e 9: 2 17 64 140 196 182 112 44 10 1

%e 10: 2 19 81 204 336 378 294 156 54 11 1

%e ... Reformatted. - _Wolfdieter Lang_, Jan 09 2015

%e With the array M(k) as defined in the Formula section, the infinite product M(0)*M(1)*M(2)*... begins

%e /1 \/1 \/1 \ /1 \

%e |2 1 ||0 1 ||0 1 | |2 1 |

%e |2 1 1 ||0 2 1 ||0 0 1 |... = |2 3 1 |

%e |2 1 1 1 ||0 2 1 1 ||0 0 2 1 | |2 5 4 1 |

%e |2 1 1 1 1||0 2 1 1 1 ||0 0 2 1 1| |2 7 9 5 1|

%e |... ||... ||... | |... |

%e - _Peter Bala_, Dec 27 2014

%p A029653 := proc(n,k)

%p if n = 0 then

%p 1;

%p else

%p binomial(n-1, k)+binomial(n, k)

%p fi

%p end proc: # _R. J. Mathar_, Jun 30 2013

%t u[1, x_] := 1; v[1, x_] := 1; z = 16;

%t u[n_, x_] := u[n - 1, x] + x*v[n - 1, x];

%t v[n_, x_] := u[n - 1, x] + x*v[n - 1, x] + 1;

%t Table[Expand[u[n, x]], {n, 1, z/2}]

%t Table[Expand[v[n, x]], {n, 1, z/2}]

%t cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];

%t TableForm[cu]

%t Flatten[%] (* A208510 *)

%t Table[Expand[v[n, x]], {n, 1, z}]

%t cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];

%t TableForm[cv]

%t Flatten[%] (* A029653 *)

%t (* _Clark Kimberling_, Feb 28 2012 *)

%o (Haskell)

%o a029653 n k = a029653_tabl !! n !! k

%o a029653_row n = a029653_tabl !! n

%o a029653_tabl = [1] : iterate

%o (\xs -> zipWith (+) ([0] ++ xs) (xs ++ [0])) [2, 1]

%o -- _Reinhard Zumkeller_, Dec 16 2013

%o (Python)

%o from sympy import Poly

%o from sympy.abc import x

%o def u(n, x): return 1 if n==1 else u(n - 1, x) + x*v(n - 1, x)

%o def v(n, x): return 1 if n==1 else u(n - 1, x) + x*v(n - 1, x) + 1

%o def a(n): return Poly(v(n, x), x).all_coeffs()[::-1]

%o for n in range(1, 13): print(a(n)) # _Indranil Ghosh_, May 27 2017

%Y (d, 1) Pascal triangles: A007318(d=1), A093560(3), A093561(4), A093562(5), A093563(6), A093564(7), A093565(8), A093644(9), A093645(10).

%Y Cf. A003945, A208510, A228196, A228576.

%Y Cf. A078812, A106195.

%K nonn,tabl

%O 0,2

%A _Mohammad K. Azarian_

%E More terms from _James A. Sellers_

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 16 20:35 EDT 2024. Contains 372555 sequences. (Running on oeis4.)